دورية أكاديمية

Individual peak alpha frequency does not index individual differences in inhibitory cognitive control.

التفاصيل البيبلوغرافية
العنوان: Individual peak alpha frequency does not index individual differences in inhibitory cognitive control.
المؤلفون: Busch N; School of Management, Technische Universität München, Munich, Germany.; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany., Geyer T; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.; Munich Center for NeuroSciences-Brain & Mind, Munich, Germany.; NICUM-NeuroImaging Core Unit Munich, Munich, Germany., Zinchenko A; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
المصدر: Psychophysiology [Psychophysiology] 2024 Aug; Vol. 61 (8), pp. e14586. Date of Electronic Publication: 2024 Apr 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8986 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell
Original Publication: Baltimore, Williams & Wilkins.
مواضيع طبية MeSH: Individuality* , Alpha Rhythm*/physiology , Executive Function*/physiology , Inhibition, Psychological*, Humans ; Male ; Female ; Adult ; Young Adult ; Electroencephalography ; Stroop Test ; Cognition/physiology ; Attention/physiology ; Adolescent ; Theta Rhythm/physiology ; Psychomotor Performance/physiology ; Bayes Theorem
مستخلص: Previous work has indicated that individual differences in cognitive performance can be predicted by characteristics of resting state oscillations, such as individual peak alpha frequency (IAF). Although IAF has previously been correlated with cognitive functions, such as memory, attention, or mental speed, its link to cognitive conflict processing remains unexplored. The current work investigated the relationship between IAF and inhibitory cognitive control in two well-established conflict tasks, Stroop and Navon task, while also controlling for alpha power, theta power, and the 1/f offset of aperiodic broadband activity. In Bayesian analyses on a large sample of 127 healthy participants, we found substantial evidence against the assumption that IAF predicts individual abilities to spontaneously exert cognitive control. Similarly, our findings yielded substantial evidence against links between cognitive control and resting state power in the alpha and theta bands or between cognitive control and aperiodic 1/f offset. In sum, our results challenge frameworks suggesting that an individual's ability to spontaneously engage attentional control networks may be mirrored in resting state EEG characteristics.
(© 2024 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)
References: Angelakis, E., Lubar, J. F., & Stathopoulou, S. (2004). Electroencephalographic peak alpha frequency correlates of cognitive traits. Neuroscience Letters, 371(1), 60–63. https://doi.org/10.1016/j.neulet.2004.08.041.
Angelakis, E., Lubar, J. F., Stathopoulou, S., & Kounios, J. (2004). Peak alpha frequency: An electroencephalographic measure of cognitive preparedness. Clinical Neurophysiology, 115(4), 887–897. https://doi.org/10.1016/j.clinph.2003.11.034.
Anokhin, A., & Vogel, F. (1996). EEG alpha rhythm frequency and intelligence in normal adults. Intelligence, 23, 1–14. https://doi.org/10.1016/S0160‐2896(96)80002‐X.
Aschenbrenner, A. J., & Balota, D. A. (2017). Dynamic adjustments of attentional control in healthy aging. Psychology and Aging, 32(1), 1–15. https://doi.org/10.1037/pag0000148.
Bazanova, O. M. (2012). Alpha EEG activity depends on the individual dominant rhythm frequency. Journal of Neurotherapy, 16(4), 270–284. https://doi.org/10.1080/10874208.2012.730786.
Berger, A. M., & Davelaar, E. J. (2018). Frontal alpha oscillations and attentional control: A virtual reality neurofeedback study. Neuroscience, 378, 189–197. https://doi.org/10.1016/j.neuroscience.2017.06.007.
Bornkessel, I. D., Fiebach, C. J., Friederici, A. D., & Schlesewsky, M. (2004). “Capacity” reconsidered: Interindividual differences in language comprehension and individual alpha frequency. Experimental Psychology, 51(4), 279–289. https://doi.org/10.1027/1618‐3169.51.4.279.
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010.
Bruyer, R., & Brysbaert, M. (2011). Combinning speed and accuracy in cognitive psychology: Is the inverse efficiency score (IES) a better dependent variable than the mean reaction time (RT) and the percentage of errors (PE)? Psychologica Belgica, 51, 5–13. https://doi.org/10.5334/pb‐51‐1‐5.
Buergers, S., & Noppeney, U. (2022). The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6(5), 732–742. https://doi.org/10.1038/s41562‐022‐01294‐x.
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525.
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. https://doi.org/10.1006/cogp.1998.0681.
Clark, C. R., Veltmeyer, M. D., Hamilton, R. J., Simms, E., Paul, R., Hermens, D., & Gordon, E. (2004). Spontaneous alpha peak frequency predicts working memory performance across the age span. International Journal of Psychophysiology, 53(1), 1–9. https://doi.org/10.1016/j.ijpsycho.2003.12.011.
Clements, G. M., Bowie, D. C., Gyurkovics, M., Low, K. A., Fabiani, M., & Gratton, G. (2021). Spontaneous alpha and theta oscillations are related to complementary aspects of cognitive control in younger and older adults. Frontiers in Human Neuroscience, 15, (106), 621620. https://doi.org/10.3389/fnhum.2021.621620.
Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332–361. https://doi.org/10.1037/0033‐295X.97.3.332.
Coldea, A., Veniero, D., Morand, S., Trajkovic, J., Romei, V., Harvey, M., & Thut, G. (2022). Effects of rhythmic transcranial magnetic stimulation in the alpha‐band on visual perception depend on deviation from alpha‐peak frequency: Faster relative transcranial magnetic stimulation alpha‐pace improves performance. Frontiers in Neuroscience, 16, 886342. https://doi.org/10.3389/fnins.2022.886342.
Craddock, M. (2022). eegUtils: Utilities for electroencephalographic (EEG) analysis. https://github.com/craddm/eegUtils; https://craddm.github.io/eegUtils.
Crump, M. J. C., Gong, Z., & Milliken, B. (2006). The context‐specific proportion congruent Stroop effect: Location as a contextual cue. Psychonomic Bulletin & Review, 13, 316–321. https://doi.org/10.3758/BF03193850.
Davis, Z. W., Muller, L., & Reynolds, J. H. (2022). Spontaneous spiking is governed by broadband fluctuations. The Journal of Neuroscience, 42(26), 5159–5172. https://doi.org/10.1523/JNEUROSCI.1899‐21.2022.
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009.
Deodato, M., & Melcher, D. (2023). Correlations between visual temporal resolution and individual alpha peak frequency: Evidence that internal and measurement noise drive null findings. Journal of Cognitive Neuroscience, 36, 590–601. https://doi.org/10.1162/jocn_a_01993.
Di Gregorio, F., Trajkovic, J., Roperti, C., Marcantoni, E., Di Luzio, P., Avenanti, A., Thut, G., & Romei, V. (2022). Tuning alpha rhythms to shape conscious visual perception. Current Biology, 32(5), 988–998.e6. https://doi.org/10.1016/j.cub.2022.01.003.
Dong, F., Li, X., Zhang, Y., Jia, S., Zhang, S., Xue, T., Ren, Y., Lv, X., Yuan, K., & Yu, D. (2021). Abnormal resting‐state EEG power and impaired inhibition control in young smokers. Neuroscience Letters, 761, 136120. https://doi.org/10.1016/j.neulet.2021.136120.
Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23(12), 1655–1665. https://doi.org/10.1038/s41593‐020‐00744‐x.
Faul, F., Erdfelder, E., Lang, A.‐G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146.
Fernández, T., Harmony, T., Rodríguez, M., Reyes, A., Marosi, E., & Bernal, J. (1993). Test‐retest reliability of EEG spectral parameters during cognitive tasks: I absolute and relative power. International Journal of Neuroscience, 68(3–4), 255–261. https://doi.org/10.3109/00207459308994280.
Goh, J. X., Hall, J. A., & Rosenthal, R. (2016). Mini meta‐analysis of your own studies: Some arguments on why and a primer on how. Social and Personality Psychology Compass, 10(10), 535–549. https://doi.org/10.1111/spc3.12267.
Grandy, T. H., Werkle‐Bergner, M., Chicherio, C., Lövdén, M., Schmiedek, F., & Lindenberger, U. (2013). Individual alpha peak frequency is related to latent factors of general cognitive abilities. NeuroImage, 79, 10–18. https://doi.org/10.1016/j.neuroimage.2013.04.059.
Gratton, G. (2018). Brain reflections: A circuit‐based framework for understanding information processing and cognitive control. Psychophysiology, 55(3), 1–26. https://doi.org/10.1111/psyp.13038.
Gratton, G., Cooper, P., Fabiani, M., Carter, C. S., & Karayanidis, F. (2018). Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future. Psychophysiology, 55(3), 1–29. https://doi.org/10.1111/psyp.13016.
Gundlach, C., Forschack, N., & Müller, M. M. (2023). Global attentional selection of visual features is not associated with selective modulation of posterior alpha‐band activity. Psychophysiology, 60(7), e14244. https://doi.org/10.1111/psyp.14244.
Gyurkovics, M., Clements, G. M., Low, K. A., Fabiani, M., & Gratton, G. (2021). The impact of 1/f activity and baseline correction on the results and interpretation of time‐frequency analyses of EEG/MEG data: A cautionary tale. NeuroImage, 237, 118192. https://doi.org/10.1016/j.neuroimage.2021.118192.
Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J., & Nobre, A. C. (2014). Inter‐ and intra‐individual variability in alpha peak frequency. NeuroImage, 92, 46–55. https://doi.org/10.1016/j.neuroimage.2014.01.049.
Hlavac, M. (2022). Stargazer: Well‐formatted regression and summary statistics tables. (R package version 5.2.3). Social Policy Institute. https://CRAN.R‐project.org/package=stargazer.
Jann, K., Koenig, T., Dierks, T., Boesch, C., & Federspiel, A. (2010). Association of individual resting state EEG alpha frequency and cerebral blood flow. NeuroImage, 51(1), 365–372. https://doi.org/10.1016/j.neuroimage.2010.02.024.
JASP Team. (2023). JASP (Version 0.18.1) [Computer software]. Retrieved from: https://jasp‐stats.org/.
Jaušovec, N., Jaušovec, K., & Gerlič, I. (2001). Differences in event‐related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neuroscience Letters, 311(2), 93–96. https://doi.org/10.1016/S0304‐3940(01)02141‐3.
Jensen, O. (2023). Gating by alpha band inhibition revised: A case for a secondary control mechanism. https://doi.org/10.31234/osf.io/7bk32.
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186–194. https://doi.org/10.3389/fnhum.2010.00186.
Jin, Y., O'Halloran, J. P., Plon, L., Sandman, C. A., & Potkin, S. G. (2006). Alpha EEG predicts visual reaction time. International Journal of Neuroscience, 116(9), 1035–1044. https://doi.org/10.1080/00207450600553232.
Kassambara, A., & Kassambara, M. A. (2020). Package ‘ggpubr’. (R package version 0.4.0). https://CRAN.R‐project.org/package=ggpubr.
Khambhati, A. N., Medaglia, J. D., Karuza, E. A., Thompson‐Schill, S. L., & Bassett, D. S. (2018). Subgraphs of functional brain networks identify dynamical constraints of cognitive control. PLoS Computational Biology, 14(7), 1–33. https://doi.org/10.1371/journal.pcbi.1006234.
Klimesch, W. (1997). EEG‐alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1), 319–340. https://doi.org/10.1016/S0167‐8760(97)00773‐3.
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2), 169–195. https://doi.org/10.1016/S0165‐0173(98)00056‐3.
Klimesch, W. (2012). Alpha‐band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007.
Klimesch, W., Doppelmayr, M., Schimke, H., & Pachinger, T. (1996). Alpha frequency, reaction time, and the speed of processing information. Journal of Clinical Neurophysiology, 13(6), 511–518. https://doi.org/10.1097/00004691‐199611000‐00006.
Klimesch, W., Sauseng, P., & Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17(5), 1129–1133. https://doi.org/10.1046/j.1460‐9568.2003.02517.x.
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition‐timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003.
Klimesch, W., Schimke, H., & Pfurtscheller, G. (1993). Alpha frequency, cognitive load and memory performance. Brain Topography, 5(3), 241–251. https://doi.org/10.1007/BF01128991.
Kondacs, A., & Szabó, M. (1999). Long‐term intra‐individual variability of the background EEG in normals. Clinical Neurophysiology, 110(10), 1708–1716. https://doi.org/10.1016/S1388‐2457(99)00122‐4.
Lawrence, M. A. (2016). ez: Easy analysis and visualization of factorial experiments (R package version 4.4‐0). https://CRAN.R‐project.org/package=ez.
Lenth, R. V. (2022). emmeans: Estimated marginal means, aka least‐squares means. (R package version 1.7.2). https://CRAN.R‐project.org/package=emmeans.
Leszczyński, M., Fell, J., & Axmacher, N. (2015). Rhythmic working memory activation in the human hippocampus. Cell Reports, 13(6), 1272–1282. https://doi.org/10.1016/j.celrep.2015.09.081.
Li, D., Sun, F., & Jiao, Y. (1996). Frontal EEG characters in aging and its correlativity with some cognitive abilities. Acta Psychologica Sinica, 28(1), 76–81.
London, R. E., Benwell, C. S. Y., Cecere, R., Quak, M., Thut, G., & Talsma, D. (2022). EEG alpha power predicts the temporal sensitivity of multisensory perception. European Journal of Neuroscience, 55(11–12), 3241–3255. https://doi.org/10.1111/ejn.15719.
MacLeod, C. M., & Hodder, S. L. (1998). Presenting two incongruent color words on a single trial does not alter Stroop interference. Memory and Cognition, 26, 212–219. https://doi.org/10.3758/BF03201134.
Mahjoory, K., Cesnaite, E., Hohlefeld, F. U., Villringer, A., & Nikulin, V. V. (2019). Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control. NeuroImage, 188, 135–144. https://doi.org/10.1016/j.neuroimage.2018.12.001.
Miller, K. J., Honey, C. J., Hermes, D., Rao, R. P., denNijs, M., & Ojemann, J. G. (2014). Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. NeuroImage, 85, 711–720. https://doi.org/10.1016/j.neuroimage.2013.08.070.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734.
Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383. https://doi.org/10.1016/0010‐0285(77)90012‐3.
Ociepka, M., Kałamała, P., & Chuderski, A. (2022). High individual alpha frequency brains run fast, but it does not make them smart. Intelligence, 92, 101644. https://doi.org/10.1016/j.intell.2022.101644.
Ostlund, B., Donoghue, T., Anaya, B., Gunther, K. E., Karalunas, S. L., Voytek, B., & Pérez‐Edgar, K. E. (2022). Spectral parameterization for studying neurodevelopment: How and why. Developmental Cognitive Neuroscience, 54, 101073. https://doi.org/10.1016/j.dcn.2022.101073.
Ouyang, G., Hildebrandt, A., Schmitz, F., & Herrmann, C. S. (2020). Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. NeuroImage, 205, 116304. https://doi.org/10.1016/j.neuroimage.2019.116304.
Pahor, A., & Jaušovec, N. (2016). Making brains run faster: Are they becoming smarter? The Spanish Journal of Psychology, 19, E88. https://doi.org/10.1017/sjp.2016.83.
Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7580–7585. https://doi.org/10.1073/pnas.0913113107.
Pedersen, T. (2022). patchwork: The Composer of plots. https://patchwork.data‐imaginist.com, https://github.com/thomasp85/patchwork.
Pion‐Tonachini, L., Kreutz‐Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage, 198, 181–197. https://doi.org/10.1016/j.neuroimage.2019.05.026.
Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase‐coupling for cognitive performance. Current Biology, 22(14), 1314–1318. https://doi.org/10.1016/j.cub.2012.05.021.
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.
Posthuma, D., Neale, M. C., Boomsma, D. I., & de Geus, E. J. C. (2001). Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation. Behavior Genetics, 31(6), 567–579. https://doi.org/10.1023/A:1013345411774.
Pscherer, C., Mückschel, M., Summerer, L., Bluschke, A., & Beste, C. (2019). On the relevance of EEG resting theta activity for the neurophysiological dynamics underlying motor inhibitory control. Human Brain Mapping, 40(14), 4253–4265. https://doi.org/10.1002/hbm.24699.
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/.
Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180–190. https://doi.org/10.1016/j.tics.2010.01.008.
Rathee, S., Bhatia, D., Punia, V., & Singh, R. (2020). Peak alpha frequency in relation to cognitive performance. Journal of Neurosciences in Rural Practice, 11(3), 416–419. https://doi.org/10.1055/s‐0040‐1712585.
Revelle, W. (2021). psych: Procedures for psychological, psychometric, and personality research (R package version 2.1.9). Northwestern University. https://CRAN.R‐project.org/package=psych.
Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha–gamma versus theta–gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16–25. https://doi.org/10.1016/j.tics.2013.10.010.
Sadaghiani, S., & Kleinschmidt, A. (2016). Brain networks and α‐oscillations: Structural and functional foundations of cognitive control. Trends in Cognitive Sciences, 20(11), 805–817. https://doi.org/10.1016/j.tics.2016.09.004.
Sauseng, P., Peylo, C., Biel, A. L., Friedrich, E. V. C., & Romberg‐Taylor, C. (2019). Does cross‐frequency phase coupling of oscillatory brain activity contribute to a better understanding of visual working memory? British Journal of Psychology, 110(2), 245–255. https://doi.org/10.1111/bjop.12340.
Schneider, C., Bade, N., Franke, M., & Janczyk, M. (2021). Presuppositions of determiners are immediately used to disambiguate utterance meaning: A mouse‐tracking study on the German language. Psychological Research, 85, 1348–1366. https://doi.org/10.1007/s00426‐020‐01302‐7.
Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47(5), 609–612. https://doi.org/10.1016/j.jrp.2013.05.009.
Schubert, A., Löffler, C., Hagemann, D., & Sadus, K. (2023). How robust is the relationship between neural processing speed and cognitive abilities? Psychophysiology, 60(2), e14165. https://doi.org/10.1111/psyp.14165.
Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D., & Mermelstein, R. J. (2012). A practical guide to calculating Cohen'sf 2, a measure of local effect size, from PROC MIXED. Frontiers in Psychology, 3, 111. https://doi.org/10.3389/fpsyg.2012.00111.
Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben‐Shachar, M. S. (2021). afex: Analysis of factorial experiments. (R package version 1.0‐1). https://CRAN.R‐project.org/package=afex.
Smit, C. M., Wright, M. J., Hansell, N. K., Geffen, G. M., & Martin, N. G. (2006). Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample. International Journal of Psychophysiology, 61(2), 235–243. https://doi.org/10.1016/j.ijpsycho.2005.10.004.
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651.
Takagi, M., Lubman, D. I., Cotton, S., Fornito, A., Baliz, Y., Tucker, A., & Yücel, M. (2011). Executive control among adolescent inhalant and cannabis users. Drug and Alcohol Review, 30, 629–637. https://doi.org/10.1111/j.1465‐3362.2010.00256.x.
Torchiano, M. (2020). effsize: Efficient effect size computation (R package version 0.8.1). https://CRAN.R‐project.org/package=effsize.
Valdés‐Hernández, P. A., Ojeda‐González, A., Martínez‐Montes, E., Lage‐Castellanos, A., Virués‐Alba, T., Valdés‐Urrutia, L., & Valdes‐Sosa, P. A. (2010). White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm. NeuroImage, 49(3), 2328–2339. https://doi.org/10.1016/j.neuroimage.2009.10.030.
VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723–735. https://doi.org/10.1016/j.tics.2016.07.006.
von Bastian, C. C., Blais, C., Brewer, G. A., Gyurkovics, M., Hedge, C., Kałamała, P., & Wiemers, E. A. (2020). Advancing the understanding of individual differences in attentional control: Theoretical, methodological, and analytical considerations. PsyArXiv https://doi.org/10.31234/osf.io/x3b9k.
Wagenmakers, E.‐J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., Selker, R., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D., Rouder, J. N., & Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25(1), 35–57. https://doi.org/10.3758/s13423‐017‐1343‐3.
West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit‐location tasks. Neuropsychologia, 41(8), 1122–1135. https://doi.org/10.1016/S0028‐3932(02)00297‐X.
Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical Software, 21(12), 1–20. https://doi.org/10.18637/jss.v021.i12.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer‐Verlag. https://ggplot2.tidyverse.org.
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., & Hester, J. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686.
Wickham, H., François, R., Henry, L., & Müller, K. (2022). dplyr: A grammar of data manipulation. (R package version 1.0.8.) [R]. https://CRAN.R‐project.org/package=dplyr.
Zhang, Y., Lu, Y., Wang, D., Zhou, C., & Xu, C. (2021). Relationship between individual alpha peak frequency and attentional performance in a multiple object tracking task among ice‐hockey players. PLoS One, 16(5), 1–11. https://doi.org/10.1371/journal.pone.0251443.
Zhu, Y., Wu, D., Sun, K., Chen, X., Wang, Y., He, Y., & Xiao, W. (2023). Alpha and theta oscillations are causally linked to interference inhibition: Evidence from high‐definition transcranial alternating current stimulation. Brain Sciences, 13(7), 1026. https://doi.org/10.3390/brainsci13071026.
Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. https://doi.org/10.1016/j.neuroimage.2010.08.078.
معلومات مُعتمدة: Hanns-Seidel-Stiftung; GE 1889/4-1 Deutsche Forschungsgemeinschaft; GE 1889/4-2 Deutsche Forschungsgemeinschaft
فهرسة مساهمة: Keywords: 1/f offset; alpha power; aperiodic activity; attentional control; cognitive control; individual peak alpha frequency; inhibition; resting state EEG; theta power
تواريخ الأحداث: Date Created: 20240410 Date Completed: 20240706 Latest Revision: 20240706
رمز التحديث: 20240707
DOI: 10.1111/psyp.14586
PMID: 38594833
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8986
DOI:10.1111/psyp.14586