دورية أكاديمية

Facile construction of gefitinib-loaded zeolitic imidazolate framework nanocomposites for the treatment of different lung cancer cells.

التفاصيل البيبلوغرافية
العنوان: Facile construction of gefitinib-loaded zeolitic imidazolate framework nanocomposites for the treatment of different lung cancer cells.
المؤلفون: Aiyasamy K; Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode, Namakkal, Tamil Nadu, India., Ramasamy M; Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode, Namakkal, Tamil Nadu, India., Hirad AH; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia., Arulselvan P; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India., Jaganathan R; Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Perak, Malaysia., Suriyaprakash J; Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China., Thangavelu I; Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India., Alarfaj AA; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
المصدر: Biotechnology and applied biochemistry [Biotechnol Appl Biochem] 2024 Aug; Vol. 71 (4), pp. 896-908. Date of Electronic Publication: 2024 Apr 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8609465 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1470-8744 (Electronic) Linking ISSN: 08854513 NLM ISO Abbreviation: Biotechnol Appl Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: Jan. 2011- : Malden : Wiley-Blackwell
Original Publication: San Diego : Academic Press, [cl986]-
مواضيع طبية MeSH: Lung Neoplasms*/drug therapy , Lung Neoplasms*/pathology , Lung Neoplasms*/metabolism , Zeolites*/chemistry , Zeolites*/pharmacology , Antineoplastic Agents*/pharmacology , Antineoplastic Agents*/chemistry , Nanocomposites*/chemistry , Gefitinib*/pharmacology , Gefitinib*/chemistry, Humans ; Cell Proliferation/drug effects ; Metal-Organic Frameworks/chemistry ; Metal-Organic Frameworks/pharmacology ; Metal-Organic Frameworks/chemical synthesis ; Imidazoles/chemistry ; Imidazoles/pharmacology ; Drug Screening Assays, Antitumor ; Apoptosis/drug effects ; Cell Line, Tumor ; A549 Cells
مستخلص: Gefitinib (GET) is a revolutionary targeted treatment inhibiting the epidermal growth factor receptor's tyrosine kinase action by competitively inhibiting the ATP binding site. In preclinical trials, several lung cancer cell lines and xenografts have demonstrated potential activity with GET. Response rates neared 25% in preclinical trials for non-small cell lung cancer. Here, we describe the one-pot synthesis of GET@ZIF-8 nanocomposites (NCs) in pure water, encapsulating zeolitic imidazolate framework 8 (ZIF-8). This method developed NCs with consistent morphology and a loading efficiency of 9%, resulting in a loading capacity of 20 wt%. Cell proliferation assay assessed the anticancer effect of GET@ZIF-8 NCs on A549 and H1299 cells. The different biochemical staining (Calcein-AM and PI and 4',6-Diamidino-2-phenylindole nuclear staining) assays assessed the cell death and morphological examination. Additionally, the mode of apoptosis was evaluated by mitochondrial membrane potential (∆ψm) and reactive oxygen species. Therefore, the study concludes that GET@ZIF-8 NCs are pledged to treat lung cancer cells.
(© 2024 International Union of Biochemistry and Molecular Biology, Inc.)
References: Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum‐based anticancer drugs. Biomater Sci. 2015;3:1002–1017. https://doi.org/10.1039/c5bm00039d.
Ganapathy K, Prakash Pandey S Bishnoi S Suriyaprakash J Alarfaj AA Hajinur Hirad A, et al. Biocidal activities of nickel oxide nanoparticles modified by copper and manganese, synthesized by green process. Appl Organomet Chem. 2024;56:e7366.
Indumathi T, Suriyaprakash J Alarfaj AA Hajinur Hirad A Jaganathan R, Mathanmohun M. Synergistic effects of CuO/TiO2‐chitosan‐farnesol nanocomposites: synthesis, characterization, antimicrobial, and anticancer activities on melanoma cells SK‐MEL‐3. J Basic Microbiol. 2024;64(2):e2300505.
Indumathi T, Kumaresan I Suriyaprakash J Alarfaj AA Hajinur Hirad A Jaganathan R, et al. Synthesis and characterization of 4‐nitro benzaldehyde with ZnO‐based nanoparticles for biomedical applications. J Basic Microbiol. 2023;64(2):2300494.
Parker JP Ude Z Marmion CJ. Exploiting developments in nanotechnology for the preferential delivery of platinum‐based anticancer agents to tumours: targeting some of the hallmarks of cancer. Metallomics. 2016;8:43–60. https://doi.org/10.1039/c5mt00181a.
Chung CYS Fung SK Tong KC Wan PK Lok CN Huang Y, et al. A multifunctional PEGylated gold(iii) compound: potent anticancer properties and self‐assembly into nanostructures for drug co‐delivery. Chem Sci. 2017;8:1942–1953. https://doi.org/10.1039/c6sc03210a.
Cao Z‐T Chen Z‐Y Sun C‐Y Li H‐J Wang H‐X Cheng Q‐Q, et al. Overcoming tumor resistance to cisplatin by cationic lipid‐assisted prodrug nanoparticles. Biomaterials. 2016;94:9–19. https://doi.org/10.1016/j.biomaterials.2016.04.001.
Babu KS Anandkumar M Tsai TY Kao TH Inbaraj BS Chen BH. Cytotoxicity and antibacterial activity of gold‐supported cerium oxide nanoparticles. Int J Nanomedicine. 2014;9:5515–5531. https://doi.org/10.2147/IJN.S70087.
Shao Y Tian X Hu W Zhang Y Liu H He H, et al. The properties of Gd2O3‐assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials. 2012;33:6438–6446. https://doi.org/10.1016/j.biomaterials.2012.05.065.
El‑Fakharany EM Abu‑Serie MM Ibrahim A Eltarahony M. Anticancer activity of lactoferrin‐coated biosynthesized selenium nanoparticles for combating different human cancer cells via mediating apoptotic effects. Sci Rep. 2023;13:9579. https://doi.org/10.1038/s41598‐023‐36492‐8.
Moshfegh A Salehzadeh A Sadat Shandiz SA Shafaghi M Naeemi AS Salehi S. Phytochemical analysis, antioxidant, anticancer and antibacterial properties of the Caspian Sea red macroalgae, Laurencia caspica, Iran. J Sci Technol Trans A Sci. 2019;43:49–56. https://doi.org/10.1007/s40995‐017‐0388‐5.
Alzubaidi AK Al‐Kaabi WJ Al Ali A Albukhaty S Al‐Karagoly H Sulaiman GM, et al. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl Sci. 2023;13:2182. https://doi.org/10.3390/app13042182.
Habibi A Sadat Shandiz SA Salehzadeh A Moradi‐Shoeili Z. Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells. J Biol Inorg Chem. 2020;25:13–22. https://doi.org/10.1007/s00775‐019‐01728‐4.
Del Buono D Di Michele A Costantino F Trevisan M Lucini L. Biogenic ZnO nanoparticles synthesized using a novel plant extract: application to enhance physiological and biochemical traits in maize. Nanomaterials. 2021;11:1270. https://doi.org/10.3390/nano11051270.
Zhang L Zhang S Li M Li Y Xiong H Jiang D, et al. Reactive oxygen species and glutathione dual responsive nanoparticles for enhanced prostate cancer therapy. Mater Sci Eng C. 2021;123:111956. https://doi.org/10.1016/j.msec.2021.111956.
Lv Z He S Wang Y Zhu X. Noble metal nanomaterials for NIR‐triggered photothermal therapy in cancer. Adv Healthc Mater. 2021;10:2001806. https://doi.org/10.1002/adhm.202001806.
Fonseca‐Santos B Gremião MPD Chorilli M. Nanotechnology‐based drug delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine. 2015;10:4981–5003. https://doi.org/10.2147/IJN.S87148.
Musumeci T Bonaccorso A Puglisi G. Epilepsy disease and nose‐to‐brain delivery of polymeric nanoparticles: an overview. Pharm. 2019;11:118. https://doi.org/10.3390/pharmaceutics11030118.
Shakourian M Yamini Y Safari M. Facile magnetization of metal–organic framework TMU‐6 for magnetic solid‐phase extraction of organophosphorus pesticides in water and rice samples. Talanta. 2020;218:121139. https://doi.org/10.1016/j.talanta.2020.121139.
Ibrahim M Sabouni R Husseini GA. Anticancer drug delivery using metal organic frameworks (MOFs). Curr Med Chem. 2017;24:193–214. https://doi.org/10.2174/0929867323666160926151216.
Abdelhamid HN. Zeolitic imidazolate frameworks (ZIF‐8) for biomedical applications: a review. Curr Med Chem. 2021;28:7023–7075. https://doi.org/10.2174/0929867328666210608143703.
Xie H Liu X Huang Z Xu L Bai R He F, et al. Nanoscale zeolitic imidazolate framework (ZIF)–8 in cancer theranostics: current challenges and prospects. Cancers. 2022;14:3935. https://doi.org/10.3390/cancers14163935.
Wang Q Sun Y Li S Zhang P Yao Q, Synthesis and modification of ZIF‐8 and its application in drug delivery and tumor therapy. RSC Adv. 2020;10:37600–37620. https://doi.org/10.1039/D0RA07950B.
Abbasi Z Shamsaei E Fang X‐Y Ladewig B Wang H. Simple fabrication of zeolitic imidazolate framework ZIF‐8/polymer composite beads by phase inversion method for efficient oil sorption. J Colloid Interface Sci. 2017;493:150–161. https://doi.org/10.1016/j.jcis.2017.01.006.
Matsuo M Sakurai H Koizumi K Saiki I. Curcumin inhibits the formation of capillary‐like tubes by rat lymphatic endothelial cells. Cancer Lett. 2007;251:288–295. https://doi.org/10.1016/j.canlet.2006.11.027.
Pawlikowska P Tayoun T Oulhen M Faugeroux V Rouffiac V Aberlenc A, et al. Exploitation of the chick embryo chorioallantoic membrane (CAM) as a platform for anti‐metastatic drug testing. Sci Rep. 2020;10:16876. https://doi.org/10.1038/s41598‐020‐73632‐w.
Han W Shi L Ren L Zhou L Li T Qiao Y, et al. A nanomedicine approach enables co‐delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug‐resistant lung cancer. Sig Transduct Target Ther. 2018;3:1–10. https://doi.org/10.1038/s41392‐018‐0019‐4.
Amgoth C He Y Wang S Yu K Wang J Hu X, et al. Metal (Au)‐decorated chitosan‐l‐arginine polymeric vector for codelivery of gefitinib and miR125b for lung cancer therapy. ACS Appl Polym Mater. 2022;4:1675–1687. https://doi.org/10.1021/acsapm.1c01515.
Zhou Z Jafari M Sriram V Kim J Lee J‐Y Ruiz‐Torres SJ, et al. Delayed sequential Co‐delivery of gefitinib and doxorubicin for targeted combination chemotherapy. Mol Pharm. 2017;14:4551–4559. https://doi.org/10.1021/acs.molpharmaceut.7b00669.
Fu X Zhang G Zhang Y Sun H Yang S Ni S, et al. Co‐delivery of anticancer drugs and cell penetrating peptides for improved cancer therapy. Chinese Chem Lett. 2021;32:1559–1562. https://doi.org/10.1016/j.cclet.2020.10.011.
Yu S Wang S Xie Z Yu S Li L Xiao H, et al. Hyaluronic acid coating on the surface of curcumin‐loaded ZIF‐8 nanoparticles for improved breast cancer therapy: an in vitro and in vivo study. Colloids Surfaces B Biointerfaces. 2021;203:111759. https://doi.org/10.1016/j.colsurfb.2021.111759.
Qin Y‐T Peng H He X‐W Li W‐Y Zhang Y‐K. pH‐responsive polymer‐stabilized ZIF‐8 nanocomposites for fluorescence and magnetic resonance dual‐modal imaging‐guided chemo‐/photodynamic combinational cancer therapy. ACS Appl Mater Interfaces. 2019;11:34268–34281. https://doi.org/10.1021/acsami.9b12641.
Majeed S Saravanan M Danish M Zakariya NA Ibrahim MNM Rizvi EH, et al. Bioengineering of green‐synthesized TAT peptide‐functionalized silver nanoparticles for apoptotic cell‐death mediated therapy of breast adenocarcinoma. Talanta. 2023;253:124026. https://doi.org/10.1016/j.talanta.2022.124026.
Rabizadeh T Varshochian R Mahdieh A Rezaei M Pazouki N Zardkanlou M, et al. Teriflunomide loaded SPION nanoparticles induced apoptosis in MDA‐MB‐231 breast cancer cells. J Clust Sci. 2023;34:1511–1525. https://doi.org/10.1007/s10876‐022‐02327‐1.
Sharifiaghdam Z Amini SM Dalouchi F Behrooz AB Azizi Y. Apigenin‐coated gold nanoparticles as a cardioprotective strategy against doxorubicin‐induced cardiotoxicity in male rats via reducing apoptosis. Heliyon. 2023;9(3):e14024. https://doi.org/10.1016/j.heliyon.2023.e14024.
Kadhim AA Abbas NR Kadhum HH Albukhaty S Jabir MS Naji AM, et al. Investigating the effects of biogenic zinc oxide nanoparticles produced using papaver somniferum extract on oxidative stress, cytotoxicity, and the induction of apoptosis in the THP‐1 cell line. Biol Trace Elem Res. 2023;201:1–13.
Gagnon M‐C Strandberg E Grau‐Campistany A Wadhwani P Reichert J Bürck J, et al. Influence of the length and charge on the activity of α‐helical amphipathic antimicrobial peptides. Biochemistry. 2017;56:1680–1695. https://doi.org/10.1021/acs.biochem.6b01071.
Sok M Šentjurc M Schara M. Membrane fluidity characteristics of human lung cancer. Cancer Lett. 1999;139:215–220. https://doi.org/10.1016/S0304‐3835(99)00044‐0.
Rehana D Mahendiran D Kumar RS Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;89:1067–1077. https://doi.org/10.1016/j.biopha.2017.02.101.
Liu W Wu L Yan S Huang R Weng X Zhou X. Graphene oxide‐based fluorescent detection of DNA and enzymes using Hoechst 33258 and its use for dual‐output fluorescent logic gates. Anal Methods. 2013;5:3631–3634. https://doi.org/10.1039/C3AY40581H.
Pansare AV Kulal DK Shedge AA Patil VR. hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs. Dalt Trans. 2016;45:12144–12155. https://doi.org/10.1039/C6DT01457G.
Hanna DH Aziz MM El Shafee E. Effective‐by‐method for the preparation of folic acid‐coated TiO2 nanoparticles with high targeting potential for apoptosis induction against bladder cancer cells (T24). Biotechnol Appl Biochem. 2023;70(5):1597–1615. https://doi.org/10.1002/bab.2456.
Mostafa‐Hedeab G Behairy A Abd‐Elhakim YM Mohamed AA‐R Noreldin AE Dahran N, et al. Green synthesized zinc oxide nanoparticles using moringa olifera ethanolic extract lessens acrylamide‐induced testicular damage, apoptosis, and steroidogenesis‐related gene dysregulation in adult rats. Antioxidants. 2023;12:361. https://doi.org/10.3390/antiox12020361.
Zhao S He L Sun Y Xu T Chen C Ouyang Y, et al. Acid‐responsive drug‐loaded copper phosphate nanoparticles for tumor cell therapy through synergistic apoptosis and ferroptosis strategy. J Nanoparticle Res. 2023;25:7. https://doi.org/10.1007/s11051‐022‐05655‐5.
Saha R Subramani K Dey S Sikdar S Incharoensakdi A. Physicochemical properties of green synthesised ZnO nanoparticles and utilisation for treatment of breast cancer. Process Biochem. 2023;129:170–184. https://doi.org/10.1016/j.procbio.2023.03.016.
Ilbasmis‐Tamer S Turk M Evran Ş Boyaci IH Ciftci H Tamer U. Cytotoxic, apoptotic and necrotic effects of starch coated copper nanoparticles on Capan 1 pancreatic cancer cells. J Drug Deliv Sci Technol. 2023;79:104077. https://doi.org/10.1016/j.jddst.2022.104077.
Jiao D Chen Y Liu X Tang X Chen J Liu Y, et al. Targeting MET endocytosis or degradation to overcome HGF‐induced gefitinib resistance in EGFR‐sensitive mutant lung adenocarcinoma. Biochem Biophys Res Commun. 2023;682:371–380. https://doi.org/10.1016/j.bbrc.2023.10.037.
Wu P‐S Lin M‐H Hsiao J‐C Lin P‐Y Pan S‐H Chen Y‐J. EGFR‐T790M mutation–derived interactome rerouted EGFR translocation contributing to gefitinib resistance in non‐small cell lung cancer. Mol Cell Proteomics. 2023;22(9):100624.
Thangudu S Tsai C‐Y Lin W‐C Su C‐H. Modified gefitinib conjugated Fe3O4 NPs for improved delivery of chemo drugs following an image‐guided mechanistic study of inner vs outer tumor uptake for the treatment of non‐small cell lung cancer. Front Bioeng Biotechnol. 2023;11:1272492. https://doi.org/10.3389/fbioe.2023.1272492.
Rehana D Mahendiran D Kumar RS Rahiman AK. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother. 2017;89:1067–1077. https://doi.org/10.1016/j.biopha.2017.02.101.
Liu W Wu L Yan S Huang R Weng X Zhou X. Graphene oxide‐based fluorescent detection of DNA and enzymes using Hoechst 33258 and its use for dual‐output fluorescent logic gates. Anal Methods. 2013;5:3631–3634. https://doi.org/10.1039/C3AY40581H.
Pansare AV Kulal DK Shedge AA Patil VR. hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs. Dalt Trans. 2016;45:12144–12155. https://doi.org/10.1039/C6DT01457G.
Liang J‐R Yang H. Ginkgolic acid (GA) suppresses gastric cancer growth by inducing apoptosis and suppressing STAT3/JAK2 signaling regulated by ROS. Biomed Pharmacother. 2020;125:109585. https://doi.org/10.1016/j.biopha.2019.109585.
Sanna V Siddiqui IA Sechi M Mukhtar H. Resveratrol‐loaded nanoparticles based on poly(epsilon‐caprolactone) and poly(d,l‐lactic‐co‐glycolic acid)–poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm. 2013;10:3871–3881. https://doi.org/10.1021/mp400342f.
Fazil M Md S Haque S Kumar M Baboota S kaur Sahni J, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47:6–15. https://doi.org/10.1016/j.ejps.2012.04.013.
Ye Z Wu W‐R Qin Y‐F Hu J Liu C Seeberger PH, et al. An integrated therapeutic delivery system for enhanced treatment of hepatocellular carcinoma. Adv Funct Mater. 2018;28:1706600. https://doi.org/10.1002/adfm.201706600.
Salinas C Amé MV Bracamonte AG. Synthetic non‐classical luminescence generation by enhanced silica nanophotonics based on nano‐bio‐FRET. RSC Adv. 2020;10:20620–20637. https://doi.org/10.1039/D0RA02939D.
Sonia S Kumar PS Mangalaraj D Ponpandian N Viswanathan C. Influence of growth and photocatalytic properties of copper selenide (CuSe) nanoparticles using reflux condensation method. Appl Surf Sci. 2013;283:802–807. https://doi.org/10.1016/j.apsusc.2013.07.022.
Chen H, Govindasamy C Oh D‐H Chelliah R Ramamoorthy A Rengarajan T, et al. Synthesis of SnO2‐Sodium alginate‐polyethylene glycol‐crocin nanocomposite for enhanced antimicrobial and anticancer activity. J Drug Delivery Sci Technol. 2024;93:105449. https://doi.org/10.1016/j.jddst.2024.105449.
فهرسة مساهمة: Keywords: apoptosis; gefitinib; lung cancer; nanocomposites; zeolitic imidazolate framework
المشرفين على المادة: 1318-02-1 (Zeolites)
0 (Antineoplastic Agents)
S65743JHBS (Gefitinib)
0 (Metal-Organic Frameworks)
0 (Imidazoles)
تواريخ الأحداث: Date Created: 20240410 Date Completed: 20240807 Latest Revision: 20240807
رمز التحديث: 20240808
DOI: 10.1002/bab.2585
PMID: 38594878
قاعدة البيانات: MEDLINE
الوصف
تدمد:1470-8744
DOI:10.1002/bab.2585