دورية أكاديمية

The combined exposure of polystyrene microplastics and high-fat feeding affects the intestinal pathology damage and microbiome in zebrafish.

التفاصيل البيبلوغرافية
العنوان: The combined exposure of polystyrene microplastics and high-fat feeding affects the intestinal pathology damage and microbiome in zebrafish.
المؤلفون: Huang P; Department of General Pediatric Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China., Hu Y; Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China., Zhang X; Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China., Zhou J; Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China., Xiao H; Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China., Du J; Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
المصدر: Journal of fish biology [J Fish Biol] 2024 Jun; Vol. 104 (6), pp. 2068-2080. Date of Electronic Publication: 2024 Apr 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing Country of Publication: England NLM ID: 0214055 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-8649 (Electronic) Linking ISSN: 00221112 NLM ISO Abbreviation: J Fish Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2003- : Oxford, UK : Blackwell Publishing
Original Publication: London, New York, Published for the Fisheries Society of the British Isles by Academic Press.
مواضيع طبية MeSH: Zebrafish*/microbiology , Microplastics*/toxicity , Polystyrenes*/toxicity , Polystyrenes*/adverse effects , Gastrointestinal Microbiome*/drug effects , Intestines*/pathology , Intestines*/microbiology , Intestines*/drug effects , Water Pollutants, Chemical*/toxicity , Water Pollutants, Chemical*/adverse effects, Animals ; Aquaculture ; Diet, High-Fat/adverse effects ; Animal Feed/analysis
مستخلص: The pervasive utilization of plastics and their integration into ecosystems has resulted in significant environmental issues, particularly the pollution of microplastics (MPs). In aquaculture, high-fat feed (HFD) is frequently employed to enhance the energy intake and economic fish production. This study utilized zebrafish as a model organism to investigate the impact of concurrent exposure to HFD and MPs on fish intestinal pathology damage and intestinal microbiome. The experimental design involved the division of zebrafish into two groups: one receiving a normal diet (ND) and the other receiving HFD. The zebrafish were exposed to a control group, as well as polystyrene (PS) MPs of varying sizes (5 and 50 μm). Histopathological examination revealed that the combination of 5 μm MPs and HFD resulted in the most significant damage to the zebrafish intestinal tract. Furthermore, gut microbiome assays indicated that exposure to MPs and HFD altered the composition of the gut microbiome. This study demonstrates that in aquaculture, the issue of HFD must be considered alongside concerns about MPs contamination, as both factors appear to have a combined effect on the intestinal pathology damage and intestinal microbiome. The findings of this research offer valuable insights for the improvement of fish farming practices.
(© 2024 Fisheries Society of the British Isles.)
References: Abd El‐Hameed, S. A. A., Negm, S. S., Ismael, N. E. M., Naiel, M. A. E., Soliman, M. M., Shukry, M., & Abdel‐Latif, H. M. R. (2021). Effects of activated charcoal on growth, immunity, oxidative stress markers, and physiological responses of Nile tilapia exposed to sub‐lethal Imidacloprid toxicity. Animals (Basel), 11(5), 1357. https://doi.org/10.3390/ani11051357.
Ahrendt, C., Perez‐Venegas, D. J., Urbina, M., Gonzalez, C., Echeveste, P., Aldana, M., Pulgar, J., & Galbán‐Malagón, C. (2020). Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Marine Pollution Bulletin, 151, 110795. https://doi.org/10.1016/j.marpolbul.2019.110795.
Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 1977–1984. https://doi.org/10.1098/rstb.2008.0304.
Arias‐Jayo, N., Abecia, L., Alonso‐Sáez, L., Ramirez‐Garcia, A., Rodriguez, A., & Pardo, M. A. (2018). High‐fat diet consumption induces microbiota Dysbiosis and intestinal inflammation in zebrafish. Microbial Ecology, 76(4), 1089–1101. https://doi.org/10.1007/s00248-018-1198-9.
Bessa, F., Barría, P., Neto, J. M., Frias, J., Otero, V., Sobral, P., & Marques, J. C. (2018). Occurrence of microplastics in commercial fish from a natural estuarine environment. Marine Pollution Bulletin, 128, 575–584. https://doi.org/10.1016/j.marpolbul.2018.01.044.
Bhagat, J., Zang, L., Nishimura, N., & Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Science of the Total Environment, 728, 138707. https://doi.org/10.1016/j.scitotenv.2020.138707.
Botterell, Z. L. R., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R. C., & Lindeque, P. K. (2019). Bioavailability and effects of microplastics on marine zooplankton: A review. Environmental Pollution, 245, 98–110. https://doi.org/10.1016/j.envpol.2018.10.065.
Bulletin, J. M. P. (2011). Microplastics in the marine environment.
Du, J., Hu, Y., Hou, M., Zhou, J., Xiang, F., Zheng, H., He, X., & Xiao, H. (2023). Combined effects of high‐fat diet and polystyrene microplastic exposure on microplastic bioaccumulation and lipid metabolism in zebrafish. Fish & Shellfish Immunology, 137, 108803. https://doi.org/10.1016/j.fsi.2023.108803.
Duan, Z., Chen, Y., Dou, Y., Fan, H., Wang, J., Cong, J., Sun, H., & Wang, L. (2024). Plastic food? Energy compensation of zebrafish (Danio rerio) after long‐term exposure to polylactic acid biomicroplastics. Journal of Hazardous Materials, 466, 133604. https://doi.org/10.1016/j.jhazmat.2024.133604.
Duan, Z., Cheng, H., Duan, X., Zhang, H., Wang, Y., Gong, Z., Zhang, H., Sun, H., & Wang, L. (2022). Diet preference of zebrafish (Danio rerio) for bio‐based polylactic acid microplastics and induced intestinal damage and microbiota dysbiosis. Journal of Hazardous Materials, 429, 128332. https://doi.org/10.1016/j.jhazmat.2022.128332.
Fu, Z., & Wang, J. (2019). Current practices and future perspectives of microplastic pollution in freshwater ecosystems in China. The Science of the Total Environment, 691, 697–712. https://doi.org/10.1016/j.scitotenv.2019.07.167.
Group, P. C. J. P.‐C. (2018). IEA:The Future of Petrochemicals Moves Toward More Sustainable Plastics & Fertilizers. (2), 51.
Gu, W., Liu, S., Chen, L., Liu, Y., Gu, C., Ren, H.‐Q., & Wu, B. (2020). Single‐cell RNA sequencing reveals size‐dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines. Environmental Science & Technology, 54(6), 3417–3427. https://doi.org/10.1021/acs.est.9b06386.
Guo, W., Lei, L., Shi, X., Li, R., Wang, Q., Han, J., Yang, L., Chen, L., & Zhou, B. (2021). Nonalcoholic fatty liver disease development in zebrafish upon exposure to Bis(2‐ethylhexyl)‐2,3,4,5‐tetrabromophthalate, a novel brominated flame retardant. Environmental Science & Technology, 55(10), 6926–6935. https://doi.org/10.1021/acs.est.1c01476.
Horzmann, K. A., & Freeman, J. L. (2018). Making waves: New developments in toxicology with the zebrafish. Toxicological Sciences, 163(1), 5–12. https://doi.org/10.1093/toxsci/kfy044.
Isobe, A., Azuma, T., Cordova, M. R., Cózar, A., Galgani, F., Hagita, R., Kanhai, L. D., Imai, K., Iwasaki, S., Kako, S. I., & Kozlovskii, N. (2021). A multilevel dataset of microplastic abundance in the world's upper ocean and the Laurentian Great Lakes. Microplastics and Nanoplastics, 1, 1–4.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Marine pollution. Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352.
Jin, Y., Xia, J., Pan, Z., Yang, J., Wang, W., & Fu, Z. (2018). Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environmental Pollution, 235, 322–329. https://doi.org/10.1016/j.envpol.2017.12.088.
Kawaguchi, S., Sakuraba, H., Kikuchi, H., Matsuki, K., Hayashi, Y., Ding, J., Tanaka, Y., Seya, K., Matsumiya, T., Hiraga, H., Fukuda, S., Sasaki, K., & Imaizumi, T. (2023). Polygonum tinctorium leaf extract ameliorates high‐fat diet‐induced intestinal epithelial damage in mice. Experimental and Therapeutic Medicine, 25(3), 112. https://doi.org/10.3892/etm.2023.11811.
Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., Shi, H., Raley‐Susman, K. M., & He, D. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. The Science of the Total Environment, 619‐620, 1–8. https://doi.org/10.1016/j.scitotenv.2017.11.103.
Li, X., Chen, Y., Zhang, S., Dong, Y., Pang, Q., Lynch, I., Xie, C., Guo, Z., & Zhang, P. (2023). From marine to freshwater environment: A review of the ecotoxicological effects of microplastics. Ecotoxicology and Environmental Safety, 251, 114564. https://doi.org/10.1016/j.ecoenv.2023.114564.
Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science & Technology, 50(7), 4054–4060. https://doi.org/10.1021/acs.est.6b00183.
Malafaia, G., Nascimento, Í. F., Estrela, F. N., Guimarães, A. T. B., Ribeiro, F., Luz, T. M., & Rodrigues, A. S. d. L. (2021). Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (eco)toxicological safety or environmental hazard? Science of the Total Environment, 783, 146994. https://doi.org/10.1016/j.scitotenv.2021.146994.
Naiel, M. A. E., Negm, S. S., Ghazanfar, S., Shukry, M., & Abdelnour, S. A. (2022). The risk assessment of high‐fat diet in farmed fish and its mitigation approaches: A review. Journal of Animal Physiology and Animal Nutrition, 107(3), 948–969. https://doi.org/10.1111/jpn.13759.
Peng, L., Fu, D., Qi, H., Lan, C. Q., Yu, H., & Ge, C. (2020). Micro‐ and nano‐plastics in marine environment: Source, distribution and threats – a review. The Science of the Total Environment, 698, 134254. https://doi.org/10.1016/j.scitotenv.2019.134254.
Qiang, L., Lo, L. S. H., Gao, Y., & Cheng, J. (2020). Parental exposure to polystyrene microplastics at environmentally relevant concentrations has negligible transgenerational effects on zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 206, 111382. https://doi.org/10.1016/j.ecoenv.2020.111382.
Qiao, R., Deng, Y., Zhang, S., Wolosker, M. B., Zhu, Q., Ren, H., & Zhang, Y. (2019). Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere, 236, 124334. https://doi.org/10.1016/j.chemosphere.2019.07.065.
Qiao, R., Sheng, C., Lu, Y., Zhang, Y., Ren, H., & Lemos, B. (2019). Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Science of the Total Environment, 662, 246–253. https://doi.org/10.1016/j.scitotenv.2019.01.245.
Salim, S. Y., Kaplan, G. G., & Madsen, K. L. (2014). Air pollution effects on the gut microbiota: A link between exposure and inflammatory disease. Gut Microbes, 5(2), 215–219. https://doi.org/10.4161/gmic.27251.
Salvador Cesa, F., Turra, A., & Baruque‐Ramos, J. (2017). Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. The Science of the Total Environment, 598, 1116–1129. https://doi.org/10.1016/j.scitotenv.2017.04.172.
Schmid, C., Cozzarini, L., & Zambello, E. (2021). Microplastic's story. Marine Pollution Bulletin, 162, 111820. https://doi.org/10.1016/j.marpolbul.2020.111820.
Tan, H., Yue, T., Xu, Y., Zhao, J., & Xing, B. (2020). Microplastics reduce lipid digestion in simulated human gastrointestinal system. Environmental Science & Technology, 54(19), 12285–12294. https://doi.org/10.1021/acs.est.0c02608.
Teng, M., Zhao, X., Wang, C., Wang, C., White, J. C., Zhao, W., Duan, M., & Wu, F. (2022). Polystyrene Nanoplastics toxicity to zebrafish: Dysregulation of the brain–intestine–microbiota Axis. ACS Nano, 16(5), 8190–8204. https://doi.org/10.1021/acsnano.2c01872.
Tursi, A., Baratta, M., Easton, T., Chatzisymeon, E., Chidichimo, F., De Biase, M., & De Filpo, G. (2022). Microplastics in aquatic systems, a comprehensive review: Origination, accumulation, impact, and removal technologies. RSC Advances, 12(44), 28318–28340. https://doi.org/10.1039/d2ra04713f.
Ullah, S., Ahmad, S., Guo, X., Ullah, S., Ullah, S., Nabi, G., & Wanghe, K. (2022). A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front Endocrinol (Lausanne), 13, 1084236. https://doi.org/10.3389/fendo.2022.1084236.
Wan, Z., Wang, C., Zhou, J., Shen, M., Wang, X., Fu, Z., & Jin, Y. (2019). Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 217, 646–658. https://doi.org/10.1016/j.chemosphere.2018.11.070.
Wang, F., Zhang, Q., Cui, J., Bao, B., Deng, X., Liu, L., & Guo, M.‐Y. (2023). Polystyrene microplastics induce endoplasmic reticulum stress, apoptosis and inflammation by disrupting the gut microbiota in carp intestines. Environmental Pollution, 323, 121233. https://doi.org/10.1016/j.envpol.2023.121233.
Wang, R., Wang, L., Wang, S., Wang, J., Su, C., Zhang, L., Li, C., & Liu, S. (2023). Phenolics from noni (Morinda citrifolia L.) fruit alleviate obesity in high fat diet‐fed mice via modulating the gut microbiota and mitigating intestinal damage. Food Chemistry, 402, 134232. https://doi.org/10.1016/j.foodchem.2022.134232.
Wu, M., Yang, C., Du, C., & Liu, H. (2020). Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects. Ecotoxicology and Environmental Safety, 202, 110910. https://doi.org/10.1016/j.ecoenv.2020.110910.
Zang, L., Maddison, L. A., & Chen, W. (2018). Zebrafish as a model for obesity and diabetes. Frontiers in Cell and Development Biology, 6, 91. https://doi.org/10.3389/fcell.2018.00091.
Zhu, W., Liu, W., Chen, Y., Liao, K., Yu, W., & Jin, H. (2023). Microplastics in Antarctic krill (Euphausia superba) from Antarctic region. The Science of the Total Environment, 870, 161880. https://doi.org/10.1016/j.scitotenv.2023.161880.
معلومات مُعتمدة: Wuhan Talents, Excellent Young Talents Program (2021); Top Medical Young Talents
فهرسة مساهمة: Keywords: gut microbiota; intestinal injury; polystyrene microplastics; zebrafish
المشرفين على المادة: 0 (Microplastics)
0 (Polystyrenes)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240410 Date Completed: 20240626 Latest Revision: 20240626
رمز التحديث: 20240627
DOI: 10.1111/jfb.15746
PMID: 38596840
قاعدة البيانات: MEDLINE
الوصف
تدمد:1095-8649
DOI:10.1111/jfb.15746