دورية أكاديمية

Preoperative nomogram for predicting spread through air spaces in clinical-stage IA non-small cell lung cancer using 18 F-fluorodeoxyglucose positron emission tomography/computed tomography.

التفاصيل البيبلوغرافية
العنوان: Preoperative nomogram for predicting spread through air spaces in clinical-stage IA non-small cell lung cancer using 18 F-fluorodeoxyglucose positron emission tomography/computed tomography.
المؤلفون: Wang Y; Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China., Lyu D; Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China., Cheng C; Department of Nuclear Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, China., Zhou T; Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China., Tu W; Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China., Xiao Y; Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China., Zuo C; Department of Nuclear Medicine, Changhai Hospital, Navy Medical University, Shanghai, 200433, China. Zuo@qq.com., Fan L; Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China. fanli0930@163.com., Liu S; Department of Radiology, Second Affiliated Hospital of Navy Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China. radiology_cz@163.com.
المصدر: Journal of cancer research and clinical oncology [J Cancer Res Clin Oncol] 2024 Apr 10; Vol. 150 (4), pp. 185. Date of Electronic Publication: 2024 Apr 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7902060 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-1335 (Electronic) Linking ISSN: 01715216 NLM ISO Abbreviation: J Cancer Res Clin Oncol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer-Verlag.
مواضيع طبية MeSH: Carcinoma, Non-Small-Cell Lung*/diagnostic imaging , Carcinoma, Non-Small-Cell Lung*/surgery , Lung Neoplasms*/diagnostic imaging , Lung Neoplasms*/surgery, Humans ; Fluorodeoxyglucose F18 ; Positron Emission Tomography Computed Tomography ; Nomograms ; Retrospective Studies
مستخلص: Purpose: This study aims to assess the predictive value of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) radiological features and the maximum standardized uptake value (SUV max ) in determining the presence of spread through air spaces (STAS) in clinical-stage IA non-small cell lung cancer (NSCLC).
Methods: A retrospective analysis was conducted on 180 cases of NSCLC with postoperative pathological assessment of STAS status, spanning from September 2019 to September 2023. Of these, 116 cases from hospital one comprised the training set, while 64 cases from hospital two formed the testing set. The clinical information, tumor SUV max , and 13 related CT features were analyzed. Subgroup analysis was carried out based on tumor density type. In the training set, univariable and multivariable logistic regression analyses were employed to identify the most significant variables. A multivariable logistic regression model was constructed and the corresponding nomogram was developed to predict STAS in NSCLC, and its diagnostic efficacy was evaluated in the testing set.
Results: SUV max , consolidation-to-tumor ratio (CTR), and lobulation sign emerged as the best combination of variables for predicting STAS in NSCLC. Among these, SUV max and CTR were identified as independent predictors for STAS prediction. The constructed prediction model demonstrated area under the curve (AUC) values of 0.796 and 0.821 in the training and testing sets, respectively. Subgroup analysis revealed a 2.69 times higher STAS-positive rate in solid nodules compared to part-solid nodules. SUV max was an independent predictor for predicting STAS in solid nodular NSCLC, while CTR and an emphysema background were independent predictors for STAS in part-solid nodular NSCLC.
Conclusion: Our nomogram based on preoperative 18 F-FDG PET/CT radiological features and SUV max effectively predicts STAS status in clinical-stage IA NSCLC. Furthermore, our study highlights that metabolic parameters and CT variables associated with STAS differ between solid and part-solid nodular NSCLC.
(© 2024. The Author(s).)
References: Aly RG, Rekhtman N, Li X, Takahashi Y, Eguchi T, Tan KS, Rudin CM, Adusumilli PS, Travis WD (2019) Spread through air spaces (STAS) is prognostic in atypical carcinoid, large cell neuroendocrine carcinoma, and small cell carcinoma of the lung. J Thorac Oncol 14(9):1583–1593. https://doi.org/10.1016/j.jtho.2019.05.009. (PMID: 10.1016/j.jtho.2019.05.009311213258160527)
Bains S, Eguchi T, Warth A, Yeh YC, Nitadori JI, Woo KM, Chou TY, Dienemann H, Muley T, Nakajima J, Shinozaki-Ushiku A, Wu YC, Lu S, Kadota K, Jones DR, Travis WD, Tan KS, Adusumilli PS (2019) Procedure-specific risk prediction for recurrence in patients undergoing lobectomy or sublobar resection for small (≤2 cm) lung adenocarcinoma: an international cohort analysis. J Thorac Oncol 14(1):72–86. https://doi.org/10.1016/j.jtho.2018.09.008. (PMID: 10.1016/j.jtho.2018.09.00830253972)
Chen Y, Jiang C, Kang W, Gong J, Luo D, You S, Cheng Z, Luo Y, Wu K (2022) Development and validation of a CT-based nomogram to predict spread through air space (STAS) in peripheral stage IA lung adenocarcinoma. Jpn J Radiol 40(6):586–594. https://doi.org/10.1007/s11604-021-01240-3. (PMID: 10.1007/s11604-021-01240-335079955)
de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, Boerman OC, Oyen WJ (2007) Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 55(1):79–87. https://doi.org/10.1016/j.lungcan.2006.08.018. (PMID: 10.1016/j.lungcan.2006.08.01817046099)
Dercle L, Fronheiser M, Lu L, Du S, Hayes W, Leung DK, Roy A, Wilkerson J, Guo P, Fojo AT, Schwartz LH, Zhao B (2020) Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res 26(9):2151–2162. https://doi.org/10.1158/1078-0432.CCR-19-2942. (PMID: 10.1158/1078-0432.CCR-19-2942321981499239371)
Eguchi T, Kameda K, Lu S, Bott MJ, Tan KS, Montecalvo J, Chang JC, Rekhtman N, Jones DR, Travis WD, Adusumilli PS (2019) Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: a propensity score-matched analysis. J Thorac Oncol 14(1):87–98. https://doi.org/10.1016/j.jtho.2018.09.005. (PMID: 10.1016/j.jtho.2018.09.00530244070)
Huang L, Tang L, Dai L, Shi Y (2022) The prognostic significance of tumor spread through air space in stage I lung adenocarcinoma. Thorac Cancer 13(7):997–1005. https://doi.org/10.1111/1759-7714.14348. (PMID: 10.1111/1759-7714.14348351746468977166)
Jin C, Cao J, Cai Y, Wang L, Liu K, Shen W, Hu J (2017) A nomogram for predicting the risk of invasive pulmonary adenocarcinoma for patients with solitary peripheral subsolid nodules. J Thorac Cardiovasc Surg 153(2):462-469.e1. https://doi.org/10.1016/j.jtcvs.2016.10.019. (PMID: 10.1016/j.jtcvs.2016.10.01927838008)
Kadota K, Nitadori JI, Sima CS, Ujiie H, Rizk NP, Jones DR, Adusumilli PS, Travis WD (2015) Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. J Thorac Oncol 10(5):806–814. https://doi.org/10.1097/JTO.0000000000000486. (PMID: 10.1097/JTO.0000000000000486256296374500042)
Kim SK, Kim TJ, Chung MJ, Kim TS, Lee KS, Zo JI, Shim YM (2018) Lung adenocarcinoma: CT features associated with spread through air spaces. Radiology 289(3):831–840. https://doi.org/10.1148/radiol.2018180431. (PMID: 10.1148/radiol.201818043130179108)
Li C, Jiang C, Gong J, Wu X, Luo Y, Sun G (2020) A CT-based logistic regression model to predict spread through air space in lung adenocarcinoma. Quant Imaging Med Surg 10(10):1984–1993. https://doi.org/10.21037/qims-20-724. (PMID: 10.21037/qims-20-724330147307495322)
Li J, Wang Y, Li J, Cao S, Che G (2022a) Meta-analysis of lobectomy and sublobar resection for stage I non-small cell lung cancer with spread through air spaces. Clin Lung Cancer 23(3):208–213. https://doi.org/10.1016/j.cllc.2021.10.004. (PMID: 10.1016/j.cllc.2021.10.00434799251)
Li XF, Shi YM, Niu R, Shao XN, Wang JF, Shao XL, Zhang FF, Wang YT (2022b) Risk analysis in peripheral clinical T1 non-small cell lung cancer correlations between tumor-to-blood standardized uptake ratio on 18F-FDG PET-CT and primary tumor pathological invasiveness: a real-world observational study. Quant Imaging Med Surg 12(1):159–171. https://doi.org/10.21037/qims-21-394. (PMID: 10.21037/qims-21-394349930688666728)
Lu S, Tan KS, Kadota K, Eguchi T, Bains S, Rekhtman N, Adusumilli PS, Travis WD (2017) Spread through air spaces (STAS) Is an independent predictor of recurrence and lung cancer-specific death in squamous cell carcinoma. J Thorac Oncol 12(2):223–234. https://doi.org/10.1016/j.jtho.2016.09.129. (PMID: 10.1016/j.jtho.2016.09.12927693541)
Nakanishi K, Nakamura S, Sugiyama T, Kadomatsu Y, Ueno H, Goto M, Ozeki N, Fukui T, Iwano S, Chen-Yoshikawa TF (2021) Diagnostic utility of metabolic parameters on FDG PET/CT for lymph node metastasis in patients with cN2 non-small cell lung cancer. BMC Cancer 21(1):983. https://doi.org/10.1186/s12885-021-08688-6. (PMID: 10.1186/s12885-021-08688-6344746808414769)
Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, Dacic S, Jain D, Kerr KM, Lantuejoul S, Noguchi M, Papotti M, Rekhtman N, Scagliotti G, van Schil P, Sholl L, Yatabe Y, Yoshida A, Travis WD (2022) The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol 17(3):362–387. https://doi.org/10.1016/j.jtho.2021.11.003. (PMID: 10.1016/j.jtho.2021.11.00334808341)
Nishimori M, Iwasa H, Miyatake K, Nitta N, Nakaji K, Matsumoto T, Yamanishi T, Yoshimatsu R, Iguchi M, Tamura M, Yamagami T (2022) 18 F FDG-PET/CT analysis of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma. Ann Nucl Med 36(10):897–903. https://doi.org/10.1007/s12149-022-01773-1. (PMID: 10.1007/s12149-022-01773-135829825)
Park CM, Goo JM, Lee HJ, Lee CH, Chun EJ, Im JG (2007) Nodular ground-glass opacity at thin-section CT: histologic correlation and evaluation of change at follow-up. Radiographics 27(2):391–408. https://doi.org/10.1148/rg.272065061. (PMID: 10.1148/rg.27206506117374860)
Portet S (2020) A primer on model selection using the Akaike Information Criterion. Infect Dis Model 5:111–128. https://doi.org/10.1016/j.idm.2019.12.010. (PMID: 10.1016/j.idm.2019.12.010319567406962709)
Qi L, Xue K, Cai Y, Lu J, Li X, Li M (2021) Predictors of CT morphologic features to identify spread through air spaces preoperatively in small-sized lung adenocarcinoma. Front Oncol 10:548430. https://doi.org/10.3389/fonc.2020.548430. (PMID: 10.3389/fonc.2020.548430335059037831277)
Qi J, Li M, Wang L, Hu Y, Liu W, Long Z, Zhou Z, Yin P, Zhou M (2023) National and subnational trends in cancer burden in China, 2005–20: an analysis of national mortality surveillance data. Lancet Public Health 8(12):e943–e955. https://doi.org/10.1016/S2468-2667(23)00211-6. (PMID: 10.1016/S2468-2667(23)00211-638000889)
Ren Y, Xie H, Dai C, She Y, Su H, Xie D, Zheng H, Zhang L, Jiang G, Wu C, Chen C (2019) Prognostic impact of tumor spread through air spaces in sublobar resection for 1A lung adenocarcinoma patients. Ann Surg Oncol 26(6):1901–1908. https://doi.org/10.1245/s10434-019-07296-w. (PMID: 10.1245/s10434-019-07296-w30887374)
Suzuki K, Koike T, Asakawa T, Kusumoto M, Asamura H, Nagai K, Tada H, Mitsudomi T, Tsuboi M, Shibata T, Fukuda H, Kato H, Japan Lung Cancer Surgical Study Group (JCOG LCSSG) (2011) A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol 6(4):751–756. https://doi.org/10.1097/JTO.0b013e31821038ab. (PMID: 10.1097/JTO.0b013e31821038ab21325976)
Toyokawa G, Yamada Y, Tagawa T, Kamitani T, Yamasaki Y, Shimokawa M, Oda Y, Maehara Y (2018) Computed tomography features of resected lung adenocarcinomas with spread through air spaces. J Thorac Cardiovasc Surg 156(4):1670-1676.e4. https://doi.org/10.1016/j.jtcvs.2018.04.126. (PMID: 10.1016/j.jtcvs.2018.04.12629961590)
Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I, WHO Panel (2015) The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10(9):1243–1260. https://doi.org/10.1097/JTO.0000000000000630. (PMID: 10.1097/JTO.000000000000063026291008)
Travis WD, Asamura H, Bankier AA, Beasley MB, Detterbeck F, Flieder DB, Goo JM, MacMahon H, Naidich D, Nicholson AG, Powell CA, Prokop M, Rami-Porta R, Rusch V, van Schil P, Yatabe Y, International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee and Advisory Board Members (2016) The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol 11(8):1204–1223. https://doi.org/10.1016/j.jtho.2016.03.025. (PMID: 10.1016/j.jtho.2016.03.02527107787)
Volpi S, Ali JM, Tasker A, Peryt A, Aresu G, Coonar AS (2018) The role of positron emission tomography in the diagnosis, staging and response assessment of non-small cell lung cancer. Ann Transl Med 6(5):95. https://doi.org/10.21037/atm.2018.01.25. (PMID: 10.21037/atm.2018.01.25296668185890043)
Walts AE, Marchevsky AM (2018) Current evidence does not warrant frozen section evaluation for the presence of tumor spread through alveolar spaces. Arch Pathol Lab Med 142(1):59–63. https://doi.org/10.5858/arpa.2016-0635-OA. (PMID: 10.5858/arpa.2016-0635-OA28967802)
Wang XY, Zhao YF, Yang L, Liu Y, Yang YK, Wu N (2020) Correlation analysis between metabolic tumor burden measured by positron emission tomography/computed tomography and the 2015 World Health Organization classification of lung adenocarcinoma, with a risk prediction model of tumor spread through air spaces. Transl Cancer Res 9(10):6412–6422. https://doi.org/10.21037/tcr-20-1934. (PMID: 10.21037/tcr-20-1934351172498798457)
Wang Y, Lyu D, Zhou T, Tu W, Fan L, Liu S (2023) Multivariate analysis based on the maximum standard unit value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and computed tomography features for preoperative predicting of visceral pleural invasion in patients with subpleural clinical stage IA peripheral lung adenocarcinoma. Diagn Interv Radiol 29(2):379–389. https://doi.org/10.4274/dir.2023.222006. (PMID: 10.4274/dir.2023.2220063698804910679694)
Yin Q, Wang H, Cui H, Wang W, Yang G, Qie P, Xun X, Han S, Liu H (2020) Meta-analysis of association between CT-based features and tumor spread through air spaces in lung adenocarcinoma. J Cardiothorac Surg 15(1):243. https://doi.org/10.1186/s13019-020-01287-9. (PMID: 10.1186/s13019-020-01287-9329122897488257)
Yokoyama S, Murakami T, Tao H, Onoda H, Hara A, Miyazaki R, Furukawa M, Hayashi M, Inokawa H, Okabe K, Akagi Y (2018) Tumor spread through air spaces identifies a distinct subgroup with poor prognosis in surgically resected lung pleomorphic carcinoma. Chest 154(4):838–847. https://doi.org/10.1016/j.chest.2018.06.007. (PMID: 10.1016/j.chest.2018.06.00729932891)
Zhang Y, Qiang JW, Ye JD, Ye XD, Zhang J (2014) High resolution CT in differentiating minimally invasive component in early lung adenocarcinoma. Lung Cancer 84(3):236–241. https://doi.org/10.1016/j.lungcan.2014.02.008. (PMID: 10.1016/j.lungcan.2014.02.00824679953)
Zhang Z, Liu Z, Feng H, Xiao F, Shao W, Liang C, Sun H, Gu X, Liu D (2020) Predictive value of radiological features on spread through air space in stage cIA lung adenocarcinoma. J Thorac Dis 12(11):6494–6504. https://doi.org/10.21037/jtd-20-1820. (PMID: 10.21037/jtd-20-1820332823517711360)
معلومات مُعتمدة: 82171926, 82202140 National Natural Science Foundation of China; 82171926, 82202140 National Natural Science Foundation of China; 20YF1449000 Shanghai Sailing Program; 2022YFC2010000, 2022YFC2010002 National Key R&D Program of China; 2022YFC2010000, 2022YFC2010002 National Key R&D Program of China; 2020YLCYJ-Y24 Clinical Innovative Project of Shanghai Changzheng Hospital; 21DZ2202600 Program of Science and Technology Commission of Shanghai Municipality; 81930049 Key Program of National Natural Science Foundation of China; 19411951300 Shanghai Science and Technology Innovation Action Plan Program
فهرسة مساهمة: Keywords: 18F-FDG PET/CT; Nomogram; Non-small cell lung cancer; Spread through air spaces
المشرفين على المادة: 0Z5B2CJX4D (Fluorodeoxyglucose F18)
تواريخ الأحداث: Date Created: 20240410 Date Completed: 20240411 Latest Revision: 20240523
رمز التحديث: 20240523
مُعرف محوري في PubMed: PMC11006761
DOI: 10.1007/s00432-024-05674-w
PMID: 38598007
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1335
DOI:10.1007/s00432-024-05674-w