دورية أكاديمية

Production of probiotic fermented salami using Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, and Bifidobacterium lactis.

التفاصيل البيبلوغرافية
العنوان: Production of probiotic fermented salami using Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, and Bifidobacterium lactis.
المؤلفون: Tukel O; Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye., Sengun I; Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye.
المصدر: Journal of food science [J Food Sci] 2024 May; Vol. 89 (5), pp. 2956-2973. Date of Electronic Publication: 2024 Apr 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
مواضيع طبية MeSH: Probiotics* , Lacticaseibacillus rhamnosus* , Bifidobacterium animalis*/physiology , Meat Products*/microbiology , Meat Products*/analysis , Fermentation* , Fermented Foods*/microbiology, Humans ; Lactobacillus plantarum ; Food Microbiology ; Taste ; Hydrogen-Ion Concentration ; Colony Count, Microbial
مستخلص: The objectives of the study were to improve the functionality of fermented salami using probiotics, to evaluate the effects of the addition of probiotics on the physicochemical and microbiological characteristics and sensory acceptance of fermented salami, and to introduce a brand-new probiotic food to the market for meat products. Fermented salami samples were produced using various formulations, including no probiotic (A), non-probiotic starter cultures (B) or probiotic cultures [Lacticaseibacillus rhamnosus LR32 200B (C), Lactiplantibacillus plantarum LP115 400B (D), Bifidobacterium lactis BB12 (E), and L. rhamnosus LR32 200B + L. plantarum LP115 400B (F)]. The samples were kept at 4°C for 60 days, and their probiotic viability as well as their chemical, physical, microbiological, and sensory qualities were assessed at intervals of 0, 15, 30, 45, and 60 days. The probiotic addition enhanced the safety and quality of the product while favorably affecting the microbiological, physical, chemical, and sensory properties of the samples. The sample produced with mixed probiotics (F) had the highest moisture and fat content and the lowest pH. Lactic acid bacteria counts were found above 6.0 log CFU/g in the samples produced with probiotic at the end of the storage. Probiotic added products were rated higher than products without probiotics in terms of color, texture, flavor, and overall acceptance during storage. Consequently, a probiotic fermented salami with high probiotic cell counts and meeting the sensory preferences of the consumers was produced.
(© 2024 The Authors. Journal of Food Science published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.)
References: Abdallah, R., Moustafa, N. Y., Kirrella, G. A., Al‐Hawary, I. I., Komiya, Y., & Arihara, K. (2018). Effect of NaCl reduction and substitution with KCl on behaviour and functional characteristics of Lactobacillus rhamnosus FERM P‐15120 in fermented beef sausage. JAPS: Journal of Animal & Plant Sciences, 28(3), 744–753.
Agüero, N. D. L., Frizzo, L. S., Ouwehand, A. C., Aleu, G., & Rosmini, M. R. (2020). Technological characterisation of probiotic lactic acid bacteria as starter cultures for dry fermented sausages. Foods, 9(5), 596. https://doi.org/10.3390/foods9050596.
Altug Onogur, T., & Elmaci, Y. (2005). Sensory evaluation in foods (2nd ed.). Sidas.
Anonymous. (2011). Microbiological Criteria Regulation. Ministry of Agriculture and Forestry. Ankara.
Association of Official Analytical Collaboration (AOAC). (1995). Official methods of analysis of the association of official analytical chemists. AOAC International, USA.
Association of Official Analytical Collaboration (AOAC). (1996a). Official methods of analysis of the association of official analytical chemists, fat (crude) in meat and meat products. AOAC International, USA.
Association of Official Analytical Collaboration (AOAC). (1996b). Official methods of analysis of the association of official analytical chemists, crude protein in meat and meat products including pet foods. AOAC International, USA.
Association of Official Analytical Collaboration (AOAC). (2000). The Official Methods of Analysis, 17th edn. Association of Official Analytical Chemists, Washington DC.
Association of Official Analytical Collaboration (AOAC). (2005). Official methods of analysis of the association of official analytical chemists, salt (as chlorine as sodium chloride) in meat. AOAC International, USA.
Association of Official Analytical Collaboration (AOAC). (2006). Official methods of analysis of the association of official analytical chemists, molecular detection assay listeria monocytogenes, no:010802. AOAC, USA.
Association of Official Analytical Collaboration (AOAC). (2016). Official methods of analysis of the association of official analytical chemists, molecular detection assay E. coli O 157:H7 no:071202. AOAC, USA.
Ayyash, M., Liu, S. Q., Al Mheiri, A., Aldhaheri, M., Raeisi, B., Al‐Nabulsi, A., Osaili, T., & Olaimat, A. (2019). In vitro investigation of health‐promoting benefits of fermented camel sausage by novel probiotic Lactobacillus plantarum: A comparative study with beef sausages. LWT, 99, 346–354. https://doi.org/10.1016/j.lwt.2018.09.084.
Ayyash, M., Olaimat, A., Al‐Nabulsi, A., & Liu, S. Q. (2020). Bioactive properties of novel probiotic Lactococcus lactis fermented camel sausages: Cytotoxicity, angiotensin converting enzyme inhibition, antioxidant capacity, and antidiabetic activity. Food Science of Animal Resources, 40(2), 155–171. https://doi.org/10.5851/kosfa.2020.e1.
Bis‐Souza, C. V., Penna, A. L. B., & da Silva Barretto, A. C. (2020). Applicability of potentially probiotic Lactobacillus casei in low‐fat Italian type salami with added fructooligosaccharides: In vitro screening and technological evaluation. Meat Science, 168, 108186. https://doi.org/10.1016/j.meatsci.2020.108186.
Blaiotta, G., Murru, N., Di Cerbo, A., Romano, R., & Aponte, M. (2018). Production of probiotic bovine salami using Lactobacillus plantarum 299v as adjunct. Journal of the Science of Food and Agriculture, 98(6), 2285–2294. https://doi.org/10.1002/jsfa.8717.
Bunesova, V., Musilova, S., Geigerova, M., Pechar, R., & Rada, V. (2015). Comparison of mupirocin‐based media for selective enumeration of bifidobacterial in probiotic supplements. Journal of Microbiological Methods, 109, 106–109. https://doi.org/10.1016/j.mimet.2014.12.016.
Carballo, J. (2021). Sausages: Nutrition, safety, processing and quality improvement. Foods, 10(4), 890.
Cavalheiro, C. P., Ruiz‐Capillas, C., Herrero, A. M., & Pintado, T. (2021). Dry‐fermented sausages inoculated with Enterococcus faecium CECT 410 as free cells or in alginate beads. LWT, 139, 110561. https://doi.org/10.1016/j.lwt.2020.110561.
Cenci‐Goga, B. T., Karama, M., Sechi, P., Iulietto, M. F., Grispoldi, L., Selvaggini, R., Ceccarelli, M., & Barbera, S. (2018). Fate of selected pathogens in spiked «SALAME NOSTRANO» produced without added nitrates following the application of NONIT™ technology. Meat Science, 139, 247–254. https://doi.org/10.1016/j.meatsci.2018.02.002.
Coelho, S. R., Lima, Í. A., Martins, M. L., Júnior, A. A. B., de Almeida Torres Filho, R., Ramos, A. D. L. S., & Ramos, E. M. (2019). Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry‐fermented sausage. LWT‐Food Science and Technology, 102, 254–259. https://doi.org/10.1016/j.lwt.2018.12.045.
Cullere, M., Novelli, E., & Dalle Zotte, A. (2020). Fat inclusion level, NaCl content and LAB starter cultures in the manufacturing of Italian‐type ostrich salami: Weight loss and nutritional traits. Foods, 9(4), 476.
de Campos, T. A. F., de Marins, A. R., Marques da Silva, N., Matiucci, M. A., Catarini Dos Santos, I., Alcalde, C. R., Rodrigues de Souza, M. L., Gomes, R. G., & Feihrmann, A. C. (2022). Effect of the addition of the probiotic Bifidobacterium animalis subsp. Lactis (BB‐12) in free and microencapsulated form and the prebiotic inulin to synbiotic dry coppa. Food Research International, 158, 111544. https://doi.org/10.1016/j.foodres.2022.111544.
de Souza Barbosa, M., Todorov, S. D., Ivanova, I., Chobert, J. M., Haertlé, T., & de Melo Franco, B. D. G. (2015). Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiology, 46, 254–262. https://doi.org/10.1016/j.fm.2014.08.004.
dos Santos Cruxen, C. E., Hoffmann, J. F., Zandoná, G. P., Fiorentini, Â. M., Rombaldi, C. V., & Chaves, F. C. (2017). Probiotic butiá (Butia odorata) ice cream: Development, characterization, stability of bioactive compounds, and viability of Bifidobacterium lactis during storage. LWT‐ Food Science and Technology, 75, 379–385. https://doi.org/10.1016/j.lwt.2016.09.011.
Erkkilä, S., Suihko, M. L., Eerola, S., Petäjä, E., & Mattila‐Sandholm, T. (2001). Dry sausage fermented by Lactobacillus rhamnosus strains. International Journal of Food Microbiology, 64(1–2), 205–210. https://doi.org/10.1016/S0168‐1605(00)00457‐8.
Food and Drug Administration—Bacteriological Analytical Mannual (FDA/BAM). (2001). Yeasts, molds and mycotoxins. FDA/BAM. https://www.fda.gov/food/laboratory‐methods‐food/bam‐chapter‐18‐yeasts‐molds‐and‐mycotoxins.
Flynn, A. W., & Bramblett, V. D. (1975). Effects of frozen storage, cooking method and musclequality on attributes of pork loins. Journal of Food Science, 40(3), 631–633.
Gómez, N. C., Ramiro, J. M., Quecan, B. X., & de Melo Franco, B. D. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Frontiers in Microbiology, 7, 863.
Hashemi, S. M. B., Roohi, R., Akbari, M., Di Natale, A., & Conte, F. (2023). Inactivation of foodborne pathogens by Lactiplantibacillus strains during meat fermentation: Kinetics and mathematical modelling. Foods, 12(17), 3150.
Holck, A., Axelsson, L., McLeod, A., Rode, T. M., & Heir, E. (2017). Health and safety considerations of fermented sausages. Journal of Food Quality, 2017, 1–24.
Holko, I., Hrabě, J., Šalaková, A., & Rada, V. (2013). The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis. Meat Science, 94(3), 275–279. https://doi.org/10.1016/j.meatsci.2013.03.005.
Hugas, M., Garriga, M., Aymerich, M. T., & Monfort, J. M. (1995). Inhibition of Listeria in dry fermented sausages by the bacteriocinogenic Lactobacillus sake CTC494. Journal of Applied Bacteriology, 79(3), 322–330.
International Organization for Standardization (ISO). (2006). Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of coliforms— Colony‐count technique (ISO Standard No. 4832: 2006). International Organization for Standardization, www.iso.org.
Jofré, A., Aymerich, T., & Garriga, M. (2015). Probiotic fermented sausages: Myth or reality? Procedia Food Science, 5, 133–136. https://doi.org/10.1016/j.profoo.2015.09.038.
Karimi, R., Mortazavian, A. M., & Amiri‐Rigi, A. (2012). Selective enumeration of probiotic microorganisms in cheese. Food Microbiology, 29(1), 1–9. https://doi.org/10.1016/j.fm.2011.08.008.
Khan, M. I., Arshad, M. S., Anjum, F. M., Sameen, A., & Gill, W. T. (2011). Meat as a functional food with special reference to probiotic sausages. Food Research International, 44(10), 3125–3133. https://doi.org/10.1016/j.foodres.2011.07.033.
Kołożyn‐Krajewska, D., & Dolatowski, Z. J. (2012). Probiotic meat products and human nutrition. Process Biochemistry, 47(12), 1761–1772. https://doi.org/10.1016/j.procbio.2012.09.017.
Libera, J., Karwowska, M., Stasiak, D. M., & Dolatowski, Z. J. (2015). Microbiological and physicochemical properties of dry‐cured neck inoculated with probiotic of Bifidobacterium animalis ssp. lactis BB‐12. International Journal of Food Science & Technology, 50(7), 1560–1566. https://doi.org/10.1111/ijfs.12806.
Libera, J., Latoch, A., & Wójciak, K. M. (2020). Utilization of grape seed extract as a natural antioxidant in the technology of meat products inoculated with a probiotic strain of LAB. Foods, 9(1), 103. https://doi.org/10.3390/foods9010103.
Mafra, J. F., de Santana, T. S., Cruz, A. I. C., Ferreira, M. A., Miranda, F. M., Araújo, F. M., Ribeiro, P. R., & Evangelista‐Barreto, N. S. (2022). Influence of red propolis on the physicochemical, microbiological and sensory characteristics of tilapia (Oreochromis niloticus) salami. Food Chemistry, 394, 133502.
Martínez, J., Nieto, G., & Ros, G. (2014). Total antioxidant capacity of meat and meat products consumed in a reference ‘Spanish standard diet’. International Journal of Food Science & Technology, 49(12), 2610–2618. https://doi.org/10.1111/ijfs.12577.
Muthukumarasamy, P., & Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate‐microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164–169. https://doi.org/10.1016/j.ijfoodmicro.2006.04.036.
O'Hara, A. M., & Shanahan, F. (2007). Mechanisms of action of probiotics in intestinal diseases. The Scientific World Journal, 7, 31–46.
Pavli, F. G., Argyri, A. A., Chorianopoulos, N. G., Nychas, G. J. E., & Tassou, C. C. (2020). Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry‐fermented sausages. LWT‐Food Science and Technology, 118, 108810. https://doi.org/10.1016/j.lwt.2019.108810.
Pérez‐Burillo, S., Mehta, T., Pastoriza, S., Kramer, D. L., Paliy, O., & Rufián‐Henares, J. Á. (2019). Potential probiotic salami with dietary fiber modulates antioxidant capacity, short chain fatty acid production and gut microbiota community structure. LWT, 105, 355–362. https://doi.org/10.1016/j.lwt.2019.02.006.
Pérez‐Burillo, S., Pastoriza, S., Gironés, A., Avellaneda, A., Francino, M. P., & Rufián‐Henares, J. A. (2020). Potential probiotic salami with dietary fiber modulates metabolism and gut microbiota in a human intervention study. Journal of Functional Foods, 66, 103790.
Pidcock, K., Heard, G. M., & Henriksson, A. (2002). Application of nontraditional meat starter cultures in production of Hungarian salami. International Journal of Food Microbiology, 76(1–2), 75–81. https://doi.org/10.1016/S0168‐1605(02)00002‐8.
Roselino, M. N., Almeida, J. F. D., Cozentino, I. C., Canaan, J. M. M., Pinto, R. A., Valdez, G. F. D., Rossi, E. A., & Cavallini, D. C. U. (2018). Probiotic salami with fat and curing salts reduction: Physicochemical, textural and sensory characteristics. Food Science and Technology, 38, 193–202.
Rouhi, M., Sohrabvandi, S., & Mortazavian, A. M. (2013). Probiotic fermented sausage: Viability of probiotic microorganisms and sensory characteristics. Critical Reviews in Food Science and Nutrition, 53(4), 331–348.
Rubio, R., Aymerich, T., Bover‐Cid, S., Guàrdia, M. D., Arnau, J., & Garriga, M. (2013). Probiotic strains Lactobacillus plantarum 299 V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT‐Food Science and Technology, 54(1), 51–56. https://doi.org/10.1016/j.lwt.2013.05.014.
Rubio, R., Jofré, A., Aymerich, T., Guàrdia, M. D., & Garriga, M. (2014). Nutritionally enhanced fermented sausages as a vehicle for potential probiotic lactobacilli delivery. Meat Science, 96(2), 937–942. https://doi.org/10.1016/j.meatsci.2013.09.008.
Ruiz, J. N., Villanueva, N. D. M., Favaro‐Trindade, C. S., & Contreras‐Castillo, C. J. (2014). Physicochemical, microbiological and sensory assessments of Italian salami sausages with probiotic potential. Scientia Agricola, 71, 204–211. https://doi.org/10.1590/S0103‐90162014000300005.
Sidira, M., Mitropoulou, G., Galanis, A., Kanellaki, M., & Kourkoutas, Y. (2019). Effect of sugar content on quality characteristics and shelf‐life of probiotic dry‐fermented sausages produced by free or immobilized Lactobacillus casei ATCC 393. Foods, 8(6), 219.
Sirini, N., Frizzo, L. S., Aleu, G., Soto, L. P., & Rosmini, M. R. (2021). Use of probiotic microorganisms in the formulation of healthy meat products. Current Opinion in Food Science, 38, 141–146.
Sirini, N., Lucas‐González, R., Fernández‐López, J., Viuda‐Martos, M., Pérez‐Álvarez, J. A., Frizzo, L. S., Signorini, M. L., Zbrun, M. V., & Rosmini, M. R. (2022). Effect of probiotic Lactiplantibacillus plantarum and chestnut flour (Castanea sativa mill) on microbiological and physicochemical characteristics of dry‐cured sausages during storage. Meat Science, 184, 108691. https://doi.org/10.1016/j.meatsci.2021.108691.
Slima, S. B., Ktari, N., Trabelsi, I., Triki, M., Feki‐Tounsi, M., Moussa, H., Makni, I., Herrero, A., Jiménez‐Colmenero, F., Ruiz‐Capillas Perez, C., & Salah, R. B. (2017). Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico‐chemical, texture and microbiological properties of beef sausages. LWT, 86, 219–226.
Slima, S. B., Ktari, N., Triki, M., Trabelsi, I., Abdeslam, A., Moussa, H., Makni, I., Herrero, A. M., Jiménez‐Colmenero, F., Ruiz‐Capillas, C., & Salah, R. B. (2018). Effects of probiotic strains, Lactobacillus plantarum TN8 and Pediococcus acidilactici, on microbiological and physico‐chemical characteristics of beef sausages. LWT‐Food Science and Technology, 92, 195–203. https://doi.org/10.1016/j.lwt.2018.02.038.
Suryaningsih, L., Hidayat, R., Utama, G. L., Pratama, A., & Balia, R. L. (2019). Effect of lactic acid bacteria and yeasts towards chemical, physical and organoleptic qualities of mutton salami. International Journal on Advanced Science, Engineering and Information Technology, 9, 829–834.
Tang, S. Z., Ou, S. Y., Huang, X. S., Li, W., Kerry, J. P., & Buckley, D. J. (2006). Effects of added tea catechins on colour stability and lipid oxidation in minced beef patties held under aerobic and modified atmospheric packaging conditions. Journal of Food Engineering, 77(2), 248–253.
Trząskowska, M., Kołożyn‐Krajewska, D., Wójciak, K., & Dolatowski, Z. (2014). Microbiological quality of raw‐fermented sausages with Lactobacillus casei LOCK 0900 probiotic strain. Food Control, 35(1), 184–191. https://doi.org/10.1016/j.foodcont.2013.07.002.
TS 1743‐ISO 1442. (2001). Meat and meat products moisture determination. Turkish Standard Institute. Ankara.
TS 3834 ISO 2293. (1996). Enumeration of microorganism colony count technique. Turkish Standard Institute. Ankara.
TS EN ISO 6579‐1. (2017). Microbiology of the food chain–horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1: Detection of Salmonella spp. Turkish Standard Institute. Ankara.
Wang, Y., Sun, Y., Zhang, X., Zhang, Z., Song, J., Gui, M., & Li, P. (2015). Bacteriocin‐producing probiotics enhance the safety and functionality of sturgeon sausage. Food Control, 50, 729–735.
Zhang, Y., Qin, Y., Wang, Y., Huang, Y., Li, P., & Li, P. (2020). Lactobacillus plantarum LPL‐1, a bacteriocin producing strain, changed the bacterial community composition and improved the safety of low‐salt fermented sausages. LWT‐Food Science and Technology, 128, 109385. https://doi.org/10.1016/j.lwt.2020.109385.
معلومات مُعتمدة: Ege University Scientific Research Project Commission; FYL-2019-20770 Production of Fermented Salami using Probiotics
فهرسة مساهمة: Keywords: fermentation; probiotic; salami/sausages
تواريخ الأحداث: Date Created: 20240411 Date Completed: 20240518 Latest Revision: 20240518
رمز التحديث: 20240519
DOI: 10.1111/1750-3841.17058
PMID: 38602050
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-3841
DOI:10.1111/1750-3841.17058