دورية أكاديمية

CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance.

التفاصيل البيبلوغرافية
العنوان: CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance.
المؤلفون: Rafiq MS; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China., Shabbir MA; Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan., Raza A; Livestock and Dairy Development Department, Punjab, Pakistan., Irshad S; Livestock and Dairy Development Department, Punjab, Pakistan., Asghar A; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan., Maan MK; Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan., Gondal MA; Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan., Hao H; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, China. haohaihong@aliyun.com.
المصدر: BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy [BioDrugs] 2024 May; Vol. 38 (3), pp. 387-404. Date of Electronic Publication: 2024 Apr 11.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Adis, Springer International Country of Publication: New Zealand NLM ID: 9705305 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1179-190X (Electronic) Linking ISSN: 11738804 NLM ISO Abbreviation: BioDrugs Subsets: MEDLINE
أسماء مطبوعة: Publication: Auckland : Adis, Springer International
Original Publication: Mairangi Bay, Auckland, N.Z. ; Langhorn, PA : Adis International, c1997-
مواضيع طبية MeSH: CRISPR-Cas Systems* , Drug Resistance, Bacterial*/genetics , Bacteria*/genetics , Bacteria*/drug effects, Humans ; Gene Transfer, Horizontal ; Anti-Bacterial Agents/pharmacology ; Anti-Bacterial Agents/therapeutic use ; Bacterial Infections/drug therapy ; Plasmids/genetics
مستخلص: Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLOS Med. 2016;13: e1002184. (PMID: 27898664512751010.1371/journal.pmed.1002184)
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond Engl. 2022;399:629–55. (PMID: 10.1016/S0140-6736(21)02724-0)
Murray, C. J. L. et al.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet Lond Engl. 2022;399:629–55.
Chung M, Yeh I, Sung L, Wu M, Chao Y, Ng I, et al. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng. 2017;114:172–83. (PMID: 2745444510.1002/bit.26056)
Tao S, Chen H, Li N, Liang W. The application of the CRISPR-Cas system in antibiotic resistance. Infect Drug Resist. 2022;15:4155–68. (PMID: 35942309935660310.2147/IDR.S370869)
Shetty VP, Akshay SD, Rai P, Deekshit VK. Integrons as the potential targets for combating multidrug resistance in Enterobacteriaceae using CRISPR- Cas9 technique. J Appl Microbiol. 2023;134: lxad137. (PMID: 3741061110.1093/jambio/lxad137)
Wu Z-Y, Huang Y-T, Chao W-C, Ho S-P, Cheng J-F, Liu P-Y. Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. J Adv Res. 2019;18:61–9. (PMID: 30809393637499710.1016/j.jare.2019.01.011)
Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8:162–73. (PMID: 28828194554737410.4292/wjgpt.v8.i3.162)
Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci. 2020;21:9604. (PMID: 33339441776721910.3390/ijms21249604)
He Y-Z, Kuang X, Long T-F, Li G, Ren H, He B, et al. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli. J Antimicrob Chemother. 2022;77:74–82. (PMID: 10.1093/jac/dkab368)
Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. CRISPR/Cas9 system: a bacterial tailor for genomic engineering. Genet Res Int. 2018. https://doi.org/10.1155/2018/3797214 . (PMID: 10.1155/2018/3797214303198226167567)
Kim J-S, Cho D-H, Park M, Chung W-J, Shin D, Ko KS, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J Microbiol Biotechnol. 2016;26:394–401. (PMID: 2650273510.4014/jmb.1508.08080)
Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36:244–6. (PMID: 1076018110.1046/j.1365-2958.2000.01838.x)
Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75. (PMID: 1195290510.1046/j.1365-2958.2002.02839.x)
Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B Biol Sci. 2016;371:20150496. (PMID: 10.1098/rstb.2015.0496)
Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat Struct Mol Biol. 2014;21:528–34. (PMID: 24793649407594210.1038/nsmb.2820)
Le Rhun A, Escalera-Maurer A, Bratovič M, Charpentier E. CRISPR-Cas in Streptococcus pyogenes. RNA Biol. 2019;16:380–9. (PMID: 30856357654636110.1080/15476286.2019.1582974)
Teng M, Yao Y, Nair V, Luo J. Latest advances of virology research using CRISPR/Cas9-based gene-editing technology and its application to vaccine development. Viruses. 2021;13:779. (PMID: 33924851814644110.3390/v13050779)
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78. (PMID: 28605718577671710.1016/j.mib.2017.05.008)
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353: aaf5573. (PMID: 27256883512778410.1126/science.aaf5573)
Alduhaidhawi AHM, AlHuchaimi SN, Al-Mayah TA, Al-Ouqaili MT, Alkafaas SS, Muthupandian S, et al. Prevalence of CRISPR-cas systems and their possible association with antibiotic resistance in Enterococcus faecalis and Enterococcus faecium collected from hospital wastewater. Infect Drug Resist. 2022;15:1143–54. (PMID: 35340673894211910.2147/IDR.S358248)
Hullahalli K, Rodrigues M, Schmidt BD, Li X, Bhardwaj P, Palmer KL. Comparative analysis of the orphan CRISPR2 locus in 242 Enterococcus faecalis strains. PLoS One. 2015;10: e0138890. (PMID: 26398194458064510.1371/journal.pone.0138890)
Hullahalli K, Rodrigues M, Nguyen UT, Palmer K. An attenuated CRISPR-Cas system in Enterococcus faecalis permits DNA acquisition. MBio. 2018. https://doi.org/10.1128/mbio.00414-18 . (PMID: 10.1128/mbio.00414-18297170095930301)
Burley KM, Sedgley CM. CRISPR-Cas, a prokaryotic adaptive immune system, in endodontic, oral, and multidrug-resistant hospital-acquired Enterococcus faecalis. J Endod. 2012;38:1511–5. (PMID: 2306322610.1016/j.joen.2012.07.004)
Hullahalli K, Rodrigues M, Palmer KL. Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. Elife. 2017;6: e26664. (PMID: 28644125549126410.7554/eLife.26664)
Gholizadeh P, Aghazadeh M, Ghotaslou R, Rezaee MA, Pirzadeh T, Cui L, et al. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob. 2021;20:1–12. (PMID: 10.1186/s12941-021-00455-6)
Zhou Y, Yang Y, Li X, Tian D, Ai W, Wang W, et al. Exploiting a conjugative endogenous CRISPR-Cas3 system to tackle multidrug-resistant Klebsiella pneumoniae. EBioMedicine. 2023;88: 104445. (PMID: 36696817987976510.1016/j.ebiom.2023.104445)
Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 2011;30:1335–42. (PMID: 21343909309412510.1038/emboj.2011.41)
Mousseau G, Kessing CF, Fromentin R, Trautmann L, Chomont N, Valente ST. The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio. 2015. https://doi.org/10.1128/mbio.00465-15 . (PMID: 10.1128/mbio.00465-15261525834495168)
Selle K, Fletcher JR, Tuson H, Schmitt DS, McMillan L, Vridhambal GS, et al. In Vivo Targeting of Clostridioides difficile Using Phage-Delivered CRISPR-Cas3 Antimicrobials. MBio. 2020;11: e00019-20. (PMID: 32156803706474210.1128/mBio.00019-20)
Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci. 2015;112:7267–72. (PMID: 26060300446673610.1073/pnas.1500107112)
Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system. Quant Biol. 2014;2:59–70. (PMID: 25722925433855510.1007/s40484-014-0030-x)
Hao M, He Y, Zhang H, Liao X-P, Liu Y-H, Sun J, et al. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2020;64:e00843-e920. (PMID: 32631827744920610.1128/AAC.00843-20)
Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–6. (PMID: 30247490687153910.1038/nbt.4245)
Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, et al. Control of plant viral diseases by CRISPR/Cas9: resistance mechanisms, strategies and challenges in food crops. Plants. 2021;10:1264. (PMID: 34206201830907010.3390/plants10071264)
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, et al. CRISPR/Cas9: a powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 2020;263: 118525. (PMID: 33031826753365710.1016/j.lfs.2020.118525)
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol. 2018;3:135–49. (PMID: 30345399619053610.1016/j.synbio.2018.09.004)
Hamilton TA, Pellegrino GM, Therrien JA, Ham DT, Bartlett PC, Karas BJ, et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat Commun. 2019;10:4544. (PMID: 31586051677807710.1038/s41467-019-12448-3)
Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56:3568–75. (PMID: 22491690339342510.1128/AAC.06330-11)
Aslam B, Rasool M, Idris A, Muzammil S, Alvi RF, Khurshid M, et al. CRISPR-Cas system: a potential alternative tool to cope antibiotic resistance. Antimicrob Resist Infect Control. 2020;9:131. (PMID: 32778162741837610.1186/s13756-020-00795-6)
Meeske AJ, Nakandakari-Higa S, Marraffini LA. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature. 2019;570:241–5. (PMID: 31142834657042410.1038/s41586-019-1257-5)
Watanabe S, Cui B, Kiga K, Aiba Y, Tan X-E, Sato’o Y, et al. Composition and diversity of CRISPR-Cas13a systems in the genus leptotrichia. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.02838 . (PMID: 10.3389/fmicb.2019.02838319210246914741)
Kiga K, Tan X-E, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun. 2020;11:2934. (PMID: 32523110728708710.1038/s41467-020-16731-6)
Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel strategy to combat antibiotic resistance: a sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics. 2021;13:352. (PMID: 33800235799827410.3390/pharmaceutics13030352)
Pyne ME, Moo-Young M, Chung DA, Chou CP. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015;81:5103–14. (PMID: 26002895449520010.1128/AEM.01248-15)
Asmamaw Mengstie M. Viral Vectors for the in vivo delivery of CRISPR components: advances and challenges. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.895713 . (PMID: 10.3389/fbioe.2022.895713356468529133430)
Yang W, Yan J, Zhuang P, Ding T, Chen Y, Zhang Y, et al. Progress of delivery methods for CRISPR-Cas9. Expert Opin Drug Deliv. 2022;19:913–26. (PMID: 3581879210.1080/17425247.2022.2100342)
Yip BH. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules. 2020;10:839. (PMID: 32486234735619610.3390/biom10060839)
Wang Y, Qi T, Liu J, Yang Y, Wang Z, Wang Y, et al. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. Sci Adv. 2023;9: eabo6405. (PMID: 36763662991700210.1126/sciadv.abo6405)
Pantoja Angles A, Ali Z, Mahfouz M. CS-cells: a CRISPR-Cas12 DNA device to generate chromosome-shredded cells for efficient and safe molecular biomanufacturing. ACS Synth Biol. 2022;11:430–40. (PMID: 3497881210.1021/acssynbio.1c00516)
Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, et al. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med. 2022;8: e10381. (PMID: 369256871001382010.1002/btm2.10381)
Rodrigues M, McBride SW, Hullahalli K, Palmer KL, Duerkop BA. Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob Agents Chemother. 2019;63:e01454-e1519. (PMID: 31527030681144110.1128/AAC.01454-19)
Nguyen GT, Dhingra Y, Sashital DG. Miniature CRISPR-Cas12 endonucleases–programmed DNA targeting in a smaller package. Curr Opin Struct Biol. 2022;77: 102466. (PMID: 361707781011418610.1016/j.sbi.2022.102466)
Yeh T-K, Jean S-S, Lee Y-L, Lu M-C, Ko W-C, Lin H-J, et al. Bacteriophages and phage-delivered CRISPR-Cas system as antibacterial therapy. Int J Antimicrob Agents. 2022;59: 106475. (PMID: 3476791710.1016/j.ijantimicag.2021.106475)
Lam KN, Spanogiannopoulos P, Soto-Perez P, Alexander M, Nalley MJ, Bisanz JE, et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 2021;37: 109930. (PMID: 34731631859198810.1016/j.celrep.2021.109930)
Fage C, Lemire N, Moineau S. Delivery of CRISPR-Cas systems using phage-based vectors. Curr Opin Biotechnol. 2021;68:174–80. (PMID: 3336071510.1016/j.copbio.2020.11.012)
Deng H, Huang W, Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: progress and prospect. Nano Res. 2019;12:2437–50. (PMID: 10.1007/s12274-019-2465-x)
Rodríguez-Rodríguez DR, Ramírez-Solís R, Garza-Elizondo MA, Garza-Rodríguez MDL, Barrera-Saldaña HA. Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med. 2019;43:1559–74. (PMID: 308165036414166)
Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics. AAPS J. 2018;20:1–22. (PMID: 10.1208/s12248-018-0267-9)
Huang J, Zhou Y, Li J, Lu A, Liang C. CRISPR/Cas systems: Delivery and application in gene therapy. Front Bioeng Biotechnol. 2022;10: 942325. (PMID: 36483767972315110.3389/fbioe.2022.942325)
Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials. 2022;291: 121876. (PMID: 363343541001837410.1016/j.biomaterials.2022.121876)
Qin W, Wang H. Delivery of CRISPR-Cas9 into mouse zygotes by electroporation. Methods Mol Biol Clifton NJ. 2019;1874:179–90. (PMID: 10.1007/978-1-4939-8831-0_10)
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology. 2021;19:401. (PMID: 34863214864289610.1186/s12951-021-01132-8)
Dhasmana N, Ram G, McAllister KN, Chupalova Y, Lopez P, Ross HF, et al. Dynamics of antibacterial drone establishment in Staphylococcus aureus: unexpected effects of antibiotic resistance genes. MBio. 2021;12:e02083-e2121. (PMID: 34781740859367010.1128/mBio.02083-21)
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat. 2023;68: 100948. (PMID: 3678084010.1016/j.drup.2023.100948)
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence—implications for human health and treatment perspectives. EMBO Rep. 2020;21: e51034. (PMID: 33400359772681610.15252/embr.202051034)
Senthilnathan R, Ilangovan I, Kunale M, Easwaran N, Ramamoorthy S, Veeramuthu A, et al. An update on CRISPR-Cas12 as a versatile tool in genome editing. Mol Biol Rep. 2023;50:2865–81. (PMID: 3664149410.1007/s11033-023-08239-1)
Agarwal C. A review: CRISPR/Cas12-mediated genome editing in fungal cells: advancements, mechanisms, and future directions in plant-fungal pathology. Sci Prepr. 2023. https://doi.org/10.14293/S2199-1006.1.SOR.2023.0001.v1.
Song X, Liu C, Wang N, Huang H, He S, Gong C, et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev. 2021;168:158–80. (PMID: 3236057610.1016/j.addr.2020.04.010)
Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45–61. (PMID: 32021319695484310.2147/IDR.S234353)
Wang Z, Cui W. CRISPR-Cas system for biomedical diagnostic platforms. View. 2020;1:20200008. (PMID: 10.1002/VIW.20200008)
Tang Y, Gao L, Feng W, Guo C, Yang Q, Li F, et al. The CRISPR–Cas toolbox for analytical and diagnostic assay development. Chem Soc Rev. 2021;50:11844–69. (PMID: 3461168210.1039/D1CS00098E)
Padmanaban V, Ranganathan UDK. CRISPR–Cas system and its use in the diagnosis of infectious diseases. Microbiol Res. 2022;263: 127100. (PMID: 3584992110.1016/j.micres.2022.127100)
Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, Lyden A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47:e83–e83. (PMID: 31114866669865010.1093/nar/gkz418)
Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:1–12. (PMID: 10.1186/s13059-016-1012-2)
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Anal Chem. 2023;160: 116980. (PMID: 10.1016/j.trac.2023.116980)
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today. 2021;37: 101092. (PMID: 33584847786479010.1016/j.nantod.2021.101092)
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14:2986–3012. (PMID: 31548639695656410.1038/s41596-019-0210-2)
Arizti-Sanz J, Freije CA, Stanton AC, Petros BA, Boehm CK, Siddiqui S, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020;11:5921. (PMID: 33219225768014510.1038/s41467-020-19097-x)
Bonini A, Poma N, Vivaldi F, Biagini D, Bottai D, Tavanti A, et al. A label-free impedance biosensing assay based on CRISPR/Cas12a collateral activity for bacterial DNA detection. J Pharm Biomed Anal. 2021;204: 114268. (PMID: 3429847110.1016/j.jpba.2021.114268)
Wang F, Wang L, Chen H, Li N, Wang Y, Li Y, et al. Rapid detection of blaKPC, blaNDM, blaOXA-48-like and blaIMP carbapenemases in enterobacterales using recombinase polymerase amplification combined with lateral flow strip. Front Cell Infect Microbiol. 2021. https://doi.org/10.3389/fcimb.2021.772966 . (PMID: 10.3389/fcimb.2021.772966353602218730293)
Nguyen LT, Macaluso NC, Pizzano BLM, Cash MN, Spacek J, Karasek J, et al. A thermostable Cas12b from Brevibacillus leverages one-pot detection of SARS-CoV-2 variants of concern. MedRxiv Prepr Serv Health Sci. 2021;2021.10.15.21265066.
Ge X, Meng T, Tan X, Wei Y, Tao Z, Yang Z, et al. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosens Bioelectron. 2021;189: 113350. (PMID: 3404908110.1016/j.bios.2021.113350)
Wei Y, Tao Z, Wan L, Zong C, Wu J, Tan X, et al. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection. Biosens Bioelectron. 2022;211: 114282. (PMID: 3559714410.1016/j.bios.2022.114282)
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 2023;68: 100948.
Huang M, Zhou X, Wang H, Xing D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90:2193–200. (PMID: 2926056110.1021/acs.analchem.7b04542)
Xiao G, Zhang S, Liang Z, Li G, Fang M, Liu Y, et al. Identification of Mycobacterium abscessus species and subspecies using the Cas12a/sgRNA-based nucleic acid detection platform. Eur J Clin Microbiol Infect Dis. 2020;39:551–8. (PMID: 3177687410.1007/s10096-019-03757-y)
Duan C, Cao H, Zhang L-H, Xu Z. Harnessing the CRISPR-Cas systems to combat antimicrobial resistance. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.716064 . (PMID: 10.3389/fmicb.2021.716064351736918712702)
Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, et al. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56:3568–75. (PMID: 22491690339342510.1128/AAC.06330-11)
Sun Q, Wang Y, Dong N, Shen L, Zhou H, Hu Y, et al. Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2019;63:e00113-e119. (PMID: 30988149659163410.1128/AAC.00113-19)
Wu X, Zha J, Koffas MA, Dordick JS. Reducing Staphylococcus aureus resistance to lysostaphin using CRISPR-dCas9. Biotechnol Bioeng. 2019;116:3149–59. (PMID: 3143306110.1002/bit.27143)
Ram G, Ross HF, Novick RP, Rodriguez-Pagan I, Jiang D. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat Biotechnol. 2018;36:971–6. (PMID: 30247487651151410.1038/nbt.4203)
Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep. 2017;7:44929. (PMID: 28322317535956110.1038/srep44929)
Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem. 2017;28:957–67. (PMID: 2821509010.1021/acs.bioconjchem.6b00676)
Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–50. (PMID: 25282355431735210.1038/nbt.3043)
Walflor HSM, Lucena ARC, Tuon FF, Medeiros LCS, Faoro H. Resensitization of fosfomycin-resistant Escherichia coli using the CRISPR system. Int J Mol Sci. 2022;23:9175. (PMID: 36012441940934510.3390/ijms23169175)
Wan P, Cui S, Ma Z, Chen L, Li X, Zhao R, et al. Reversal of mcr-1-mediated colistin resistance in Escherichia coli by CRISPR-Cas9 system. Infect Drug Resist. 2020;13:1171–8. (PMID: 32368108718411810.2147/IDR.S244885)
Reuter A, Hilpert C, Dedieu-Berne A, Lematre S, Gueguen E, Launay G, et al. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res. 2021;49:3584–98. (PMID: 33660775803465510.1093/nar/gkab126)
Tagliaferri TL, Guimarães NR, Pereira MPM, Vilela LFF, Horz H-P, Dos Santos SG, et al. Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae. Front Microbiol. 2020;11:578. (PMID: 32425894720334610.3389/fmicb.2020.00578)
Li P, Wan P, Zhao R, Chen J, Li X, Li J, et al. Targeted elimination of blaNDM-5 gene in Escherichia coli by conjugative CRISPR-Cas9 system. Infect Drug Resist. 2022;15:1707–16. (PMID: 35422639900473110.2147/IDR.S357470)
Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014;32:1141–5. (PMID: 25240928423716310.1038/nbt.3011)
Liu H, Li H, Liang Y, Du X, Yang C, Yang L, et al. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranostics. 2020;10:6310–21. (PMID: 32483454725501610.7150/thno.42573)
Wang T, Liu Y, Sun H-H, Yin B-C, Ye B-C. An RNA-guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew Chem. 2019;131:5436–40. (PMID: 10.1002/ange.201901292)
Guk K, Keem JO, Hwang SG, Kim H, Kang T, Lim E-K, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron. 2017;95:67–71. (PMID: 2841266310.1016/j.bios.2017.04.016)
Wang X, Xiong E, Tian T, Cheng M, Lin W, Wang H, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano. 2020;14:2497–508. (PMID: 3204552210.1021/acsnano.0c00022)
You Y, Zhang P, Wu G, Tan Y, Zhao Y, Cao S, et al. Highly specific and sensitive detection of Yersinia pestis by portable Cas12a-UPTLFA platform. Front Microbiol. 2021;12: 700016. (PMID: 34305865829296110.3389/fmicb.2021.700016)
Ai J-W, Zhou X, Xu T, Yang M, Chen Y, He G-Q, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect. 2019;8:1361–9. (PMID: 31522608675869110.1080/22221751.2019.1664939)
Wang Y, Liang X, Xu J, Nan L, Liu F, Duan G, et al. Rapid and ultrasensitive detection of methicillin-resistant Staphylococcus aureus based on CRISPR-Cas12a combined with recombinase-aided amplification. Front Microbiol. 2022;13: 903298. (PMID: 35722329920418210.3389/fmicb.2022.903298)
Liu X, Qiu X, Xu S, Che Y, Han L, Kang Y, et al. A CRISPR-Cas12a-assisted fluorescence platform for rapid and accurate detection of Nocardia cyriacigeorgica. Front Cell Infect Microbiol. 2022;12: 835213. (PMID: 35310854892465510.3389/fcimb.2022.835213)
Wang Y, Ke Y, Liu W, Sun Y, Ding X. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level. Acs Sens. 2020;5:1427–35. (PMID: 3233796610.1021/acssensors.0c00320)
Lu P, Chen J, Li Z, Li Z, Zhang J, Kan B, et al. Visual identification and serotyping of toxigenic Vibrio cholerae serogroups O1 and O139 with CARID. Front Cell Infect Microbiol. 2022;12: 863435. (PMID: 35433512900858710.3389/fcimb.2022.863435)
Xiao X, Lin Z, Huang X, Lu J, Zhou Y, Zheng L, et al. Rapid and sensitive detection of Vibrio vulnificus using CRISPR/Cas12a combined with a recombinase-aided amplification assay. Front Microbiol. 2021;12: 767315. (PMID: 34745075856687810.3389/fmicb.2021.767315)
Qiu E, Jin S, Xiao Z, Chen Q, Wang Q, Liu H, et al. CRISPR-based Detection of Helicobacter pylori in Stool Samples. Helicobacter. 2021;26: e12828. (PMID: 3411765510.1111/hel.12828)
Li C, Chen X, Wen R, Ma P, Gu K, Li C, et al. Immunocapture magnetic beads enhanced the LAMP-CRISPR/Cas12a method for the sensitive, specific, and visual detection of Campylobacter jejuni. Biosensors. 2022;12:154. (PMID: 35323424894650110.3390/bios12030154)
Wu H, Cao X, Meng Y, Richards D, Wu J, Ye Z, et al. DropCRISPR: a LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid. Biosens Bioelectron. 2022;211: 114377. (PMID: 3560945310.1016/j.bios.2022.114377)
Schultzhaus Z, Wang Z, Stenger D. Systematic analysis, identification, and use of CRISPR/Cas13a–associated crRNAs for sensitive and specific detection of the lcrV gene of Yersinia pestis. Diagn Microbiol Infect Dis. 2021;99: 115275. (PMID: 3336043110.1016/j.diagmicrobio.2020.115275)
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42. (PMID: 28408723552619810.1126/science.aam9321)
Zhou J, Yin L, Dong Y, Peng L, Liu G, Man S, et al. CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples. Anal Chim Acta. 2020;1127:225–33. (PMID: 3280012810.1016/j.aca.2020.06.041)
Zhan Y, Gao X, Li S, Si Y, Li Y, Han X, et al. Development and evaluation of rapid and accurate CRISPR/Cas13-based RNA diagnostics for Pneumocystis jirovecii pneumonia. Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/fcimb.2022.904485 . (PMID: 10.3389/fcimb.2022.904485367109839816403)
Gao S, Liu J, Li Z, Ma Y, Wang J. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a. J Food Sci. 2021;86:2615–25. (PMID: 3393185410.1111/1750-3841.15745)
Song F, Wei Y, Wang P, Ge X, Li C, Wang A, et al. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosens Bioelectron. 2021;185: 113262. (PMID: 3393075310.1016/j.bios.2021.113262)
WAI CC. Genome-wide CRISPR Screen for Host Factors Associated With Norovirus Infections in Stem Cell-derived Human Intestinal Enteroid Model [Internet]. clinicaltrials.gov; 2018 Sep. Report No.: NCT03342547. Available from: https://clinicaltrials.gov/study/NCT03342547.
Chinese Medical Association. Species-specific Bacterial Detector for Fast Pathogen Diagnosis of Severe Pneumonia Patients in Intensive Care Uint: a Multicentre, Randomised Controlled Trial [Internet]. clinicaltrials.gov; 2022 May. Report No.: NCT05143593. Available from: https://clinicaltrials.gov/study/NCT05143593.
Zhang W. Evaluation of CRISPR-based Test for the Rapid Identification of Mycobacterium Tuberculosis Complex in Pulmonary Tuberculosis Suspects [Internet]. clinicaltrials.gov; 2019 Aug. Report No.: NCT04074369. Available from: https://clinicaltrials.gov/study/NCT04074369.
Diagnostic trial: Human Enterovirus Infections, HEV, (NCT04535648) [Internet]. CRISPR Med. [cited 2024 Feb 22]. Available from: https://crisprmedicinenews.com/diagnostic-trial/human-enterovirus-infections-hev-nct04535648-1/.
Chinese Medical Association. Effect of PCR-CRISPR/Cas12a on the Early Anti-infective Schemes in Patients With Open Air Pneumonia [Internet]. clinicaltrials.gov; 2019 Nov. Report No.: NCT04178382. Available from: https://clinicaltrials.gov/study/NCT04178382.
Children’s Hospital of Fudan University. Establishment a Nucleic Acid Rapid Detection Technology Platform for Detecting Pathogenic Bordetella and Its Drug Resistance Genes [Internet]. clinicaltrials.gov; 2022 Sep. Report No.: NCT04535505. Available from: https://clinicaltrials.gov/study/NCT04535505.
معلومات مُعتمدة: 32172914 the National Natural Science Foundation of China; 2021YFD1800600 Key Technology Research and Development Program of Shandong Province; . 2662022DKYJC005 the Fundamental Research Funds for the Central Universities
المشرفين على المادة: 0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20240411 Date Completed: 20240427 Latest Revision: 20240516
رمز التحديث: 20240517
DOI: 10.1007/s40259-024-00656-3
PMID: 38605260
قاعدة البيانات: MEDLINE
الوصف
تدمد:1179-190X
DOI:10.1007/s40259-024-00656-3