دورية أكاديمية

Haematopoietic innate interleukin 17A production drives immunopathology in female mouse genital Chlamydia muridarum infection.

التفاصيل البيبلوغرافية
العنوان: Haematopoietic innate interleukin 17A production drives immunopathology in female mouse genital Chlamydia muridarum infection.
المؤلفون: Armitage CW; School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.; Peter Goher Department of Immunobiology, Kings College London, London, UK., Bryan ER; School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia., Trim L; School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia., Palframan E; School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia., Wager L; School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia., Beagley KW; School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia., Carey AJ; School of Biomedical Science and Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.
المصدر: Scandinavian journal of immunology [Scand J Immunol] 2024 May; Vol. 99 (5), pp. e13359. Date of Electronic Publication: 2024 Jan 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 0323767 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-3083 (Electronic) Linking ISSN: 03009475 NLM ISO Abbreviation: Scand J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell Scientific Publications
Original Publication: Oslo, Universitetsforlaget.
مواضيع طبية MeSH: Chlamydia Infections* , Chlamydia muridarum* , Interleukin-17* , Reproductive Tract Infections*/pathology, Animals ; Female ; Mice ; Mice, Inbred C57BL
مستخلص: Chlamydia trachomatis infection is the leading cause of bacterial urogenital infection and has been demonstrated to drive inflammation and scarring of the reproductive tract. Recent studies have identified key triggers of proinflammatory adaptive immune responses driven by innate leukocytes and epithelia driving immunopathology. Utilizing chimeric mouse models, we investigated the definitive source and role of IL17 and IL17 signalling receptors during early Chlamydia muridarum infection of the female urogenital tract. Bone marrow transplants from wild-type (WT) and IL17A -/- mice to recipients demonstrated equivocal infection kinetics in the reproductive tract, but interestingly, adoptive transfer of IL17A -/- immune cells to WT recipients resulted in no infertility, suggesting a haematopoietic (as opposed to tissue) source of IL17 driving immunopathology. To further delineate the role of IL17 in immunopathology, we infected WT and IL17 receptor A (IL17RA) -/- female mice and observed a significant reduction in immunopathology in IL17RA -/- mice. WT bone marrow transplants to IL17RA -/- recipient mice prevented hydrosalpinx, suggesting signalling through IL17RA drives immunopathology. Furthermore, early chemical inhibition of IL17 signalling significantly reduced hydrosalpinx, suggesting IL17 acts as an innate driver of disease. Early during the infection, IL17 was produced by γδ T cells in the cervico-vagina, but more importantly, by neutrophils at the site of infertility in the oviducts. Taken together, these data suggest innate production of IL17 by haematopoietic leukocytes drives immunopathology in the epithelia during early C. muridarum infection of the female reproductive tract.
(© 2024 The Authors. Scandinavian Journal of Immunology published by John Wiley & Sons Ltd on behalf of The Scandinavian Foundation for Immunology.)
References: Organisation WH. Sexually transmitted infections (STIs). 2023. https://www.who.int/news‐room/fact‐sheets/detail/sexually‐transmitted‐infections‐(stis).
Land JA, Van Bergen JE, Morrц SA, Postma MJ. Epidemiology of Chlamydia trachomatis infection in women and the cost‐effectiveness of screening. Hum Reprod Update. 2010;16(2):189‐204.
Dockterman J, Coers J. Immunopathogenesis of genital chlamydia infection: insights from mouse models. Pathog Dis. 2021;79(4):ftab012.
Brunham RC, Rey‐Ladino J. Immunology of chlamydia infection: implications for a chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149‐161.
Hafner L, Beagley K, Timms P. Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol. 2008;1(2):116‐130.
Hvid M, Baczynska A, Deleuran B, et al. Interleukin‐1 is the initiator of fallopian tube destruction during chlamydia trachomatis infection. Cell Microbiol. 2007;9(12):2795‐2803.
Gyorke CE, Kollipara A, Allen J, et al. IL‐1a is essential for oviduct pathology during genital chlamydial infection in mice. J Immunol. 2020;205(11):3037‐3049.
Darville T, Andrews CW Jr, Sikes JD, Fraley PL, Rank RG. Early local cytokine profiles in strains of mice with different outcomes from chlamydial genital tract infection. Infect Immun. 2001;69(6):3556‐3561.
Ramsey KH, Sigar IM, Schripsema JH, Shaba N, Cohoon KP. Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice. Infect Immun. 2005;73(10):6962‐6973.
Darville T, Hiltke TJ. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis. 2010;201(Suppl 2):S114‐S125.
Scurlock AM, Frazer LC, Andrews CW Jr, et al. Interleukin‐17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect Immun. 2011;79(3):1349‐1362.
Gaffen SL. Structure and signalling in the IL‐17 receptor family. Nat Rev Immunol. 2009;9(8):556‐567.
Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin‐17 family members. Immunity. 2011;34(2):149‐162.
Andrew DW, Cochrane M, Schripsema JH, et al. The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL‐17 knockout mice but protection is not increased further by immunization. PloS One. 2013;8(9):e76664.
O'Meara CP, Armitage CW, Harvie MC, et al. Immunity against a chlamydia infection and disease may be determined by a balance of IL‐17 signaling. Immunol Cell Biol. 2014;92(3):287‐297.
Jha R, Srivastava P, Salhan S, et al. Spontaneous secretion of interleukin‐17 and ‐22 by human cervical cells in chlamydia trachomatis infection. Microbes Infect. 2011;13(2):167‐178.
Hu S, He W, Du X, et al. IL‐17 production of neutrophils enhances antibacteria ability but promotes arthritis development during mycobacterium tuberculosis infection. EBioMedicine. 2017;23:88‐99.
Xu S, Han Y, Xu X, Bao Y, Zhang M, Cao X. IL‐17A‐producing gammadeltaT cells promote CTL responses against listeria monocytogenes infection by enhancing dendritic cell cross‐presentation. J Immunol. 2010;185(10):5879‐5887.
Zhang HJ, Xu B, Wang H, et al. IL‐17 is a protection effector against the adherent‐invasive Escherichia coli in murine colitis. Mol Immunol. 2018;93:166‐172.
O'Brien RL, Roark CL, Born WK. IL‐17‐producing gammadelta T cells. Eur J Immunol. 2009;39(3):662‐666.
Bai H, Gao X, Zhao L, et al. Respective IL‐17A production by gd T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol Immunol. 2017;14(10):850‐861.
Amend SR, Valkenburg KC, Pienta KJ. Murine hind limb long bone dissection and bone marrow isolation. J Vis Exp. 2016;110:53936.
Duran‐Struuck R, Dysko RC. Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci. 2009;48(1):11‐22.
Carey AJ, Cunningham KA, Hafner LM, Timms P, Beagley KW. Effects of inoculating dose on the kinetics of Chlamydia muridarum genital infection in female mice. Immunol Cell Biol. 2009;87(4):337‐343.
Shah AA, Schripsema JH, Imtiaz MT, et al. Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex Transm Dis. 2005;32(1):49‐56.
O'Meara CP, Armitage CW, Andrew DW, et al. Multistage vaccines containing outer membrane, type III secretion system and inclusion membrane proteins protects against a chlamydia genital tract infection and pathology. Vaccine. 2017;35(31):3883‐3888.
Carey AJ, Huston WM, Cunningham KA, et al. Characterization of in vitro Chlamydia muridarum persistence and utilization in an in vivo mouse model of chlamydia vaccine. Am J Reprod Immunol. 2013;69(5):475‐485.
Carey AJ, Tan CK, Mirza S, et al. Infection and cellular defense dynamics in a novel 17b‐estradiol murine model of chronic human group B streptococcus genital tract colonization reveal a role for hemolysin in persistence and neutrophil accumulation. J Immunol. 2014;192(4):1718‐1731.
Solt LA, Banerjee S, Campbell S, Kamenecka TM, Burris TP. ROR inverse agonist suppresses insulitis and prevents hyperglycemia in a mouse model of type 1 diabetes. Endocrinology. 2015;156(3):869‐881.
Billon C, Sitaula S, Burris TP. Inhibition of RORa/g suppresses atherosclerosis via inhibition of both cholesterol absorption and inflammation. Mol Metab. 2016;5(10):997‐1005.
Perets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high‐grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;24(6):751‐765.
Armitage CW, O'Meara CP, Beagley KW. Chlamydia pneumoniae and Chlamydia trachomatis infection differentially modulates human dendritic cell line (MUTZ) differentiation and activation. Scand J Immunol. 2015;82(1):48‐54.
Bouch RJ, Zhang J, Miller BC, et al. Distinct inflammatory Th17 subsets emerge in autoimmunity and infection. J Exp Med. 2023;220(10):e20221911.
Nguyen N, Guleed S, Olsen AW, et al. Th1/Th17 T cell tissue‐resident immunity increases protection, but is not required in a vaccine strategy against genital infection with Chlamydia trachomatis. Front Immunol. 2021;12:790463.
Vicetti Miguel RD, Quispe Calla NE, Pavelko SD, Cherpes TL. Intravaginal Chlamydia trachomatis challenge infection elicits TH1 and TH17 immune responses in mice that promote pathogen clearance and genital tract damage. PloS One. 2016;11(9):e0162445.
Qiao S, Zhang H, Zha X, et al. Endogenous IL‐17A mediated neutrophil infiltration by promoting chemokines expression during chlamydial lung infection. Microb Pathog. 2019;129:106‐111.
Luo Q, Liu Y, Shi K, et al. An autonomous activation of interleukin‐17 receptor signaling sustains inflammation and promotes disease progression. Immunity. 2023;56(9):2006‐2020.e2006.
Cua DJ, Tato CM. Innate IL‐17‐producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479‐489.
Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL‐17 production. J Immunol. 2007;178(7):4466‐4472.
Hamada S, Umemura M, Shiono T, et al. IL‐17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J Immunol. 2008;181(5):3456‐3463.
Masson L, Salkinder AL, Olivier AJ, et al. Relationship between female genital tract infections, mucosal interleukin‐17 production and local T helper type 17 cells. Immunology. 2015;146(4):557‐567.
معلومات مُعتمدة: National Health and Medical Research Council; APP1052464 National Health and Medical Research Council (NHMRC); APP1083314 National Health and Medical Research Council (NHMRC)
فهرسة مساهمة: Keywords: Chlamydia infection; infertility; interleukin 17A
المشرفين على المادة: 0 (Interleukin-17)
تواريخ الأحداث: Date Created: 20240412 Date Completed: 20240415 Latest Revision: 20240429
رمز التحديث: 20240429
DOI: 10.1111/sji.13359
PMID: 38605527
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-3083
DOI:10.1111/sji.13359