دورية أكاديمية

An amino-rich polymer-coated magnetic nanomaterial for ultra-rapid separation of phosphorylated peptides in the serum of Parkinson's disease patients.

التفاصيل البيبلوغرافية
العنوان: An amino-rich polymer-coated magnetic nanomaterial for ultra-rapid separation of phosphorylated peptides in the serum of Parkinson's disease patients.
المؤلفون: Zhang X; Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China., Wang B; Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China., Luo Y; Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China., Ding CF; Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China. dingchuanfan@nbu.edu.cn., Yan Y; Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China. yanyinghua@nbu.edu.cn.
المصدر: Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2024 Jun; Vol. 416 (14), pp. 3361-3371. Date of Electronic Publication: 2024 Apr 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Heidelberg : Springer-Verlag, 2002-
مواضيع طبية MeSH: Parkinson Disease*/blood , Phosphopeptides*/blood , Polymers*/chemistry , Nanostructures*/chemistry, Humans ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
مستخلص: The elucidation of disease pathogenesis can be achieved by analyzing the low-abundance phosphopeptides in organisms. Herein, we developed a novel and easy-to-prepare polymer-coated nanomaterial. By improving the hydrophilicity and spatial conformation of the material, we effectively enhanced the adsorption of phosphopeptides and demonstrated excellent enrichment properties. The material was able to successfully enrich the phosphopeptides in only 1 min. Meanwhile, the material has high selectivity (1:2000), good loading capacity (100 μg/mg), excellent sensitivity (0.5 fmol), and great acid and alkali resistance. In addition, the material was applied to real samples, and 70 phosphopeptides were enriched from the serum of Parkinson's disease (PD) patients and 67 phosphopeptides were enriched from the serum of normal controls. Sequences Logo showed that PD is probably associated with threonine, glutamate, serine, and glutamine. Finally, gene ontology (GO) analysis was performed on phosphopeptides enriched in PD patients' serum. The results showed that PD patients expressed abnormal expression of the cholesterol metabolic process and cell-matrix adhesion in the biological process (BP), endoplasmic reticulum and lipoprotein in the cellular component (CC), and heparin-binding, lipid-binding, and receptor-binding in the molecular function (MF) as compared with normal individuals. All the experiments indicate that the nanomaterials have great potential in proteomics studies.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)
References: Chu HM, Zheng HY, Miao AZ, Deng CH, Sun NR. Probing region-resolved heterogeneity of phosphoproteome in human lens by hybrid metal organic frameworks. Chin Chem Lett. 2023;34: 107716. https://doi.org/10.1016/j.cclet.2022.07.059 . (PMID: 10.1016/j.cclet.2022.07.059)
Zhang XY, Feng QS, Xie ZH, Xu FX, Yan YH, Ding CF. A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes. Anal Bioanal Chem. 2022;414:7885–95. https://doi.org/10.1007/s00216-022-04323-w . (PMID: 10.1007/s00216-022-04323-w36136112)
Wang B, Zhang XY, Wang BC, Feng QS, Luo YT, Wang WM, Ding CF, Yan YH. Ti 4+ functionalized β-cyclodextrin covalent organic framework as a new immobilized metal ion affinity chromatography platform for selective capture of phosphorylated peptides and exosomes. Microchim Acta. 2023;190:299. https://doi.org/10.1007/s00604-023-05952-3 . (PMID: 10.1007/s00604-023-05952-3)
Xu ZX, Chen HL, Chu HM, Shen XZ, Deng CH, Sun NR, Wu H. Diagnosis and subtype classification on serum peptide fingerprints by mesoporous polydopamine with built-in metal-organic framework. Chin Chem Lett. 2023;34: 107829. https://doi.org/10.1016/j.cclet.2022.107829 . (PMID: 10.1016/j.cclet.2022.107829)
Wang DN, Feng QS, Luo YT, Wang WM, Yan YH, Deng CH. Self-assembly of hydrazide-linked porous organic polymers rich in titanium for efficient enrichment of glycopeptides and phosphopeptides from human serum. Analyst. 2023;148:3392–402. https://doi.org/10.1039/d3an00709j . (PMID: 10.1039/d3an00709j37368458)
Hua SW, Wang B, Ding CF, Yan YH. A novel carbon-based material with titanium and zirconium ions etched on hollow mesoporous carbon tubes for specific capture of phosphopeptides and exosomes. Talanta. 2023;266: 125139. https://doi.org/10.1016/j.talanta.2023.125139 . (PMID: 10.1016/j.talanta.2023.12513937659233)
Chen YJ, Chen HL, Yang CJ, Wu YL, Deng CH, Sun NR. Specific enrichment of urinary exosomes and exosomal glycopeptides by coefficient affinity of integrated l -cysteine and titania. Chin Chem Lett. 2023;34: 107352. https://doi.org/10.1016/j.cclet.2022.03.075 . (PMID: 10.1016/j.cclet.2022.03.075)
Wang BC, Yan YH, Ding CF. Metal organic frameworks as advanced adsorbent materials for separation and analysis of complex samples. J Chromatogr A. 2022;1671: 462971. https://doi.org/10.1016/j.chroma.2022.462971 . (PMID: 10.1016/j.chroma.2022.46297135378322)
Wang BC, Xie ZH, Ding CF, Deng CH, Yan YH. Recent advances in metal oxide affinity chromatography materials for phosphoproteomics. Trac-Trend Anal Chem. 2022;158: 116881. https://doi.org/10.1016/j.trac.2022.116881 . (PMID: 10.1016/j.trac.2022.116881)
Yan YH, Deng CH. Recent advances in nanomaterials for sample pre-treatment in phosphoproteomics research. Trac-Trend Anal Chem. 2019;120: 115655. https://doi.org/10.1016/j.trac.2019.115655 . (PMID: 10.1016/j.trac.2019.115655)
Wang B, Wang BC, Feng QS, Fang X, Dai XH, Yang YH, Ding CF. Magnetic guanidyl-functionalized covalent organic framework composite: a platform for specific capture and isolation of phosphopeptides and exosomes. Microchim Acta. 2022;189:330. https://doi.org/10.1007/s00604-022-05394-3 . (PMID: 10.1007/s00604-022-05394-3)
Xu ZX, Wu YL, Hu XF, Deng CH, Sun NR. Inherently hydrophilic mesoporous channel coupled with metal oxide for fishing endogenous salivary glycopeptides and phosphopeptides. Chin Chem Lett. 2022;33:4695–9. https://doi.org/10.1016/j.cclet.2021.12.069 . (PMID: 10.1016/j.cclet.2021.12.069)
Wang QY, Fang F, Sun LL. Pilot investigation of magnetic nanoparticle-based immobilized metal affinity chromatography for efficient enrichment of phosphoproteoforms for mass spectrometry-based top-down proteomics. Anal Bioanal Chem. 2023;415:4521–31. https://doi.org/10.1007/s00216-023-04677-9 . (PMID: 10.1007/s00216-023-04677-937017721)
Zheng HJ, Jia JX, Li Z, Jia Q. Bifunctional magnetic supramolecular-organic framework: a nanoprobe for simultaneous enrichment of glycosylated and phosphorylated peptides. Anal Chem. 2020;92:2680–9. https://doi.org/10.1021/acs.analchem.9b04691 . (PMID: 10.1021/acs.analchem.9b0469131977188)
Gao W, Zhang F, Zhang S, Li JY, Lian HZ. Hydrophilic porous magnetic graphene oxide/chitosan composites for the selective separation and enrichment of N-glyco- and phosphopeptides. ACS Appl Nano Mater. 2023;6:15563–6673. https://doi.org/10.1021/acsanm.3c02350 . (PMID: 10.1021/acsanm.3c02350)
Jiang DD, Wu SY, Li YY, Qi RX, Liu JH. Effective enrichment of phosphopeptides using magnetic polyoxometalate-based metal-organic frameworks. ACS Biomater Sci Eng. 2023;9:5632–8. https://doi.org/10.1021/acsbiomaterials.3c00986 . (PMID: 10.1021/acsbiomaterials.3c0098637694584)
Zhang MM, Wang H, Bhandari R, Pan QH, Sun FY. Facile synthesis of titanium(IV) ion-immobilized arsenate-modified poly(glycidyl methacrylate) microparticles and the application to the specific enrichment of phosphoproteins. Anal Bioanal Chem. 2021;413:2893–901. https://doi.org/10.1007/s00216-021-03215-9 . (PMID: 10.1007/s00216-021-03215-933704525)
Chen LJ, Humphrey SJ, Zhu JL, Zhu FF, Wang XQ, Wang X, Wen J, Yang HB, Gale PA. A two-dimensional metallacycle cross-linked switchable polymer for fast and highly efficient phosphorylated peptide enrichment. J Am Chem Soc. 2021;143:8295–304. https://doi.org/10.1021/jacs.0c12904 . (PMID: 10.1021/jacs.0c12904340424308193630)
Chen JK, Wang B, Luo YT, Wang WM, Ding CF, Yan YH. Facile preparation of porphyrin-based porous organic polymers for specific enrichment and isolation of phosphopeptides and phosphorylated exosomes. Talanta. 2023;264: 124771. https://doi.org/10.1016/j.talanta.2023.124771 . (PMID: 10.1016/j.talanta.2023.12477137311329)
Zhang XY, Hua SW, Feng QS, Ding CF, Wu YY, Yan YH. A novel hydrophilic polymer-coated magnetic nanomaterial based on the HILIC strategy for fast separation of glycopeptides and glycosylated exosomes. Anal Bioanal Chem. 2023;415:5755–67. https://doi.org/10.1007/s00216-023-04857-7 . (PMID: 10.1007/s00216-023-04857-737540345)
Borrebaeck CAK. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 2017;17:199–204. https://doi.org/10.1038/nrc.2016.153 . (PMID: 10.1038/nrc.2016.15328154374)
Yuan YS, Zhou XJ, Tong Q, Zhang L, Zhang L, Qi ZQ, Ge S, Zhang KZ. Change in plasma levels of amino acid neurotransmitters and its correlation with clinical heterogeneity in early Parkinson’s disease patients. CNS Neurosci Ther. 2013;19:889–96. https://doi.org/10.1111/cns.12165 . (PMID: 10.1111/cns.12165239816896493594)
Morales I, Sabate M, Rodriguez M. Striatal glutamate induces retrograde excitotoxicity and neuronal degeneration of intralaminar thalamic nuclei: their potential relevance for Parkinson’s disease. Eur J Neurosci. 2013;38:2172–82. https://doi.org/10.1111/ejn.12205 . (PMID: 10.1111/ejn.1220523565852)
Yang J, Zhang YM, Zhao SG, Zhang ZL, Tong XQ, Wei F, Lu ZN. Heat shock protein 70 induction by glutamine increases the α-synuclein degradation in SH-SY5Y neuroblastoma cells. Mol Med Rep. 2015;12:5524–30. https://doi.org/10.3892/mmr.2015.4027 . (PMID: 10.3892/mmr.2015.402726135068)
Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and pathological roles of cdk5: potential directions for therapeutic targeting in neurodegenerative disease. 2020;11:1218–1230. https://doi.org/10.1021/acschemneuro.0c00096 .
Xin X, Wang Y, Zhang LL, Zhang D, Sha LH, Zhu ZY, Huang XY, Mao WY, Zhang JF. Development and therapeutic potential of adaptor-associated kinase 1 inhibitors in human multifaceted diseases. Eur J Med Chem. 2023;248: 115102. https://doi.org/10.1016/j.ejmech.2023.115102 . (PMID: 10.1016/j.ejmech.2023.11510236640459)
Dai L, Zou L, Meng L, Qiang GF, Yan MM, Zhang ZT. Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol. 2021;58:2183–201. https://doi.org/10.1007/s12035-020-02232-6 . (PMID: 10.1007/s12035-020-02232-633411241)
Chapman MA. Interactions between cell adhesion and the synaptic vesicle cycle in Parkinson’s disease. Med Hypotheses. 2014;83:203–7. https://doi.org/10.1016/j.mehy.2014.04.029 . (PMID: 10.1016/j.mehy.2014.04.02924837686)
Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan XH, Ye LB, Xiao J. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol. 2015;51:1343–52. https://doi.org/10.1007/s12035-014-8813-7 . (PMID: 10.1007/s12035-014-8813-725048984)
Guo XY, Song W, Chen K, Chen XP, Zheng ZZ, Cao B, Huang R, Zhao B, Wu Y, Shang HF. The serum lipid profile of Parkinson’s disease patients: a study from China. Int J Neurosci. 2015;125:838–44. https://doi.org/10.3109/00207454.2014.979288 . (PMID: 10.3109/00207454.2014.97928825340257)
Skaanning LK, Santoro A, Skamris T, Martinsen JH, D’Ursi AM, Bucciarelli S, Vestergaard B, Bugge K, Langkilde AE, Kragelund BB. The non-fibrillating N-terminal of α-synuclein binds and co-fibrillates with heparin. 2020;10:1192. https://doi.org/10.3390/biom10081192 .
Galon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T. Increased adenosine A 2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain. 2004;127:1075–84. https://doi.org/10.1093/brain/awh128 . (PMID: 10.1093/brain/awh128)
Burn DJ, Rinne JO, Quinn NP, Lees AJ, Marsden CD, Brooks DJ. Striatal opioid receptor binding in Parkinson’s disease, striatonigral degeneration and Steele-Richardson-Olszewski syndrome A [ 11 C] diprenoiphine PET study. Brain. 1995;118:951–8. https://doi.org/10.1093/brain/118.4.951 . (PMID: 10.1093/brain/118.4.9517655890)
معلومات مُعتمدة: 2023YFF0613402 National Key Research and Development Program of China; LY22B050008 Natural Science Foundation of Zhejiang Province
فهرسة مساهمة: Keywords: Enrichment; MALDI-TOF MS; Magnetic nanomaterial; PD; Phosphopeptides
تواريخ الأحداث: Date Created: 20240412 Date Completed: 20240520 Latest Revision: 20240520
رمز التحديث: 20240520
DOI: 10.1007/s00216-024-05287-9
PMID: 38607383
قاعدة البيانات: MEDLINE
الوصف
تدمد:1618-2650
DOI:10.1007/s00216-024-05287-9