دورية أكاديمية

A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation.

التفاصيل البيبلوغرافية
العنوان: A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation.
المؤلفون: Ye Y; College of Life Science, Capital Normal University, Beijing, 100048, China., Liu H; College of Life Science, Capital Normal University, Beijing, 100048, China., Wang Z; College of Life Science, Capital Normal University, Beijing, 100048, China., Qi Q; Beijing Chaoyang Foreign Language School, Beijing, 100012, China., Du J; College of Life Science, Capital Normal University, Beijing, 100048, China., Tian S; College of Life Science, Capital Normal University, Beijing, 100048, China. cnu_tianshen@sina.com.
المصدر: Biotechnology letters [Biotechnol Lett] 2024 Aug; Vol. 46 (4), pp. 531-543. Date of Electronic Publication: 2024 Apr 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8008051 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6776 (Electronic) Linking ISSN: 01415492 NLM ISO Abbreviation: Biotechnol Lett Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: [Kew, Eng., Science and Technology Letters]
مواضيع طبية MeSH: Ethanol*/metabolism , Lignin*/metabolism , Saccharomyces cerevisiae*/genetics , Saccharomyces cerevisiae*/metabolism , Saccharomyces cerevisiae*/enzymology , Fermentation* , Cellulosomes*/metabolism , Cellulosomes*/genetics, Cellulose/metabolism ; Laccase/metabolism ; Laccase/genetics
مستخلص: Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Ahmad Z, Bajwa MA, Hussain F, Randhawa MA (2017) A novel approach to delignify Lignocellulosic materials by using Ligninolytic enzyme consortium. BioResources 11(4):10511–10527. https://doi.org/10.15376/biores.11.4.10511-10527.
Antosova Z, Herkommerova K, Pichova I, Sychrova H (2018) Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent-A comparative study. Biotechnol Progr 34(1):69–80. https://doi.org/10.1002/btpr.2559. (PMID: 10.1002/btpr.2559)
Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer AE (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. PNAS 111(25):9109–9114. https://doi.org/10.1073/pnas.1404148111. (PMID: 10.1073/pnas.1404148111249275974078869)
Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8(6):364–377. https://doi.org/10.1002/tcr.20160. (PMID: 10.1002/tcr.2016019107866)
Chen YY, Stemple B, Kumar M, Wei N (2016) Cell surface display fungal laccase as a renewable biocatalyst for degradation of persistent micropollutants bisphenol A and sulfamethoxazole. Environ Sci Technol 50(16):8799–8808. https://doi.org/10.1021/acs.est.6b01641. (PMID: 10.1021/acs.est.6b0164127414990)
Chen HY, Liang XY, Li SZ, Cui ZL, Yong YC, Ni Z, Bu Q, Zhu DC (2022) Straw lignin degradation by lignin peroxidase from Irpex lacteus cooperated with enzymes and small molecules. Biotech Lett 45(1):95–104. https://doi.org/10.1007/s10529-022-03325-z. (PMID: 10.1007/s10529-022-03325-z)
Davidi L, Moraïs S, Artzi L, Knop D, Hadar Y, Arfi Y, Bayer EA (2016) Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. PNAS 113(39):10854–10859. https://doi.org/10.1073/pnas.1608012113. (PMID: 10.1073/pnas.1608012113276214425047212)
Gan MJ, Niu YQ, Qu XJ, Zhou CH (2022) Lignin to value-added chemicals and advanced materials: extraction, degradation, and functionalization. Green Chem 24(20):7705–7750. https://doi.org/10.1186/s40643-015-0049-5. (PMID: 10.1186/s40643-015-0049-5)
Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4):355–360. https://doi.org/10.1002/yea.320110408. (PMID: 10.1002/yea.3201104087785336)
Guo X, Cavka A, Jönsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12(1):93. https://doi.org/10.1186/1475-2859-12-93. (PMID: 10.1186/1475-2859-12-93241196913856561)
Hamre AG, Stromnes AS, Gustavsen D, Vaaje-Kolstad G, Eijsink VGH, Sorlie M (2019) Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity. Carbohyd Res 473:66–71. https://doi.org/10.1016/j.carres.2019.01.001. (PMID: 10.1016/j.carres.2019.01.001)
Haq I, Arshad Y, Nawaz A, Aftab M, Rehman A, Mukhtar H, Mansoor Z, Syed Q (2018) Removal of phenolic compounds through overliming for enhanced saccharification of wheat straw. J Chem Technol Biot 93(10):3011–3017. https://doi.org/10.1002/jctb.5659. (PMID: 10.1002/jctb.5659)
Hou L, Ji D, Dong W, Yuan L, Zhang F, Li Y, Zang L (2020) The synergistic action of electro-fenton and white-rot fungi in the degradation of lignin. Front Bioeng Biotechnol 8:99. https://doi.org/10.3389/fbioe.2020.00099.
Hyeon JE, You SK, Kang DH, Ryu SH, Kim M, Lee SS, Han SO (2014) Enzymatic degradation of lignocellulosic biomass by continuous process using laccase and cellulases with the aid of scaffoldin for ethanol production. Process Biochem 49(8):1266–1273. https://doi.org/10.1016/j.procbio.2014.05.004. (PMID: 10.1016/j.procbio.2014.05.004)
Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S (2019) Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol 56:179–186. https://www.ncbi.nlm.nih.gov/pubmed/30530243.
Karla IĐ, Raluca O, Aleksandra ĐĐ, Nikolina P, Stefan S, Rainer F, Radivoje P (2020) Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme Microb Technol 136(C):109509. https://doi.org/10.1016/j.enzmictec.2020.109509.
Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI (2014) Spectroscopic and computational insight into the activation of O 2 by the mononuclear Cu center in polysaccharide monooxygenases. PNAS 111(24):8797–8802. https://doi.org/10.1073/pnas.1408115111. (PMID: 10.1073/pnas.1408115111248896374066490)
Kong W, Chen H, Lyu S, Ma F, Yu H, Zhang X (2016) Characterization of a novel manganese peroxidase from white-rot fungus Echinodontium taxodii 2538, and its use for the degradation of lignin-related compounds. Process Biochem 51(17):1776–1783. https://doi.org/10.1016/j.procbio.2016.01.007. (PMID: 10.1016/j.procbio.2016.01.007)
Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, Zhang X, Yu H (2017) A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol Biofuels 10:218. https://doi.org/10.1186/s13068-017-0906-x. (PMID: 10.1186/s13068-017-0906-x289244535598073)
Kracher D, Forsberg Z, Bissaro B, Gangl S, Preims M, Sygmund C, Eijsink VGH, Ludwig R (2020) Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase. FEBS J 287(5):897–908. https://doi.org/10.1111/febs.15067. (PMID: 10.1111/febs.1506731532909)
Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7(1):135. https://doi.org/10.1186/s13068-014-0135-5. (PMID: 10.1186/s13068-014-0135-5253560864212100)
Li F, Ma F, Zhao H, Zhang S, Wang L, Zhang X, Yu H (2019) A lytic polysaccharide monooxygenase from a white-rot fungus drives the degradation of lignin by a versatile peroxidase. Appl Environ Microb 85(9):e02803-02818. https://doi.org/10.1128/aem.02803-18. (PMID: 10.1128/aem.02803-18)
Li M, Wang L, Zhao Q, Chen H (2022) High concentration of fermentable sugars prepared from steam exploded lignocellulose in periodic peristalsis integrated fed-batch enzymatic hydrolysis. Appl Biochem Biotech 194(11):5255–5273. https://doi.org/10.1007/s12010-022-03969-7. (PMID: 10.1007/s12010-022-03969-7)
Liu H, Wang X, Liu Y, Kang Z, Lu J, Ye Y, Wang Z, Zhuang X, Tian S (2022) An accessory enzymatic system of cellulase for simultaneous saccharification and co-fermentation. Bioresources and Bioprocessing 9(1):101. https://doi.org/10.1186/s40643-022-00585-5. (PMID: 10.1186/s40643-022-00585-53864787210991206)
Majeke BM, Collard FX, Tyhoda L, Gorgens JF (2021) The synergistic application of quinone reductase and lignin peroxidase for the deconstruction of industrial (technical) lignins and analysis of the degraded lignin products. Bioresour Technol 319:124152. https://doi.org/10.1016/j.copbio.2018.11.011. (PMID: 10.1016/j.copbio.2018.11.01132992274)
Nguyen TPA, Nguyen TTM, Nguyen NH, Nguyen TN, Dang TTP (2020) Application of yeast surface display system in expression of recombinant pediocin PA-1 in Saccharomyces cerevisiae. Folia Microbiol 65(6):955–961. https://doi.org/10.1007/s12223-020-00804-6. (PMID: 10.1007/s12223-020-00804-6)
Nikolina P, Dunja P, Maja M, Olivera P, Selin E, Karla IĐ, Raluca O, Rainer F, Radivoje P (2021) Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. Int J Biol Macromol 181:1072–1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115. (PMID: 10.1016/j.ijbiomac.2021.04.115)
Perna V, Meyer AS, Holck J, Eltis LD, Eijsink VGH, Wittrup Agger J (2020) Laccase-catalyzed oxidation of lignin induces production of H 2 O 2 . ACS Sustain Chem Eng 8(2):831–841. https://doi.org/10.1021/acssuschemeng.9b04912. (PMID: 10.1021/acssuschemeng.9b04912)
Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioproc 2(1):23. https://doi.org/10.1186/s40643-015-0049-5. (PMID: 10.1186/s40643-015-0049-5)
Sadeghian-Abadi S, Rezaei S, Yousefi-Mokri M, Faramarzi MA (2019) Enhanced production, one-step affinity purification, and characterization of laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme. J Environ Manage 244:235–246. https://doi.org/10.1016/j.jenvman.2019.05.058. (PMID: 10.1016/j.jenvman.2019.05.05831125874)
Schneider WDH, Fontana RC, Baudel HM, de Siqueira FG, Rencoret J, Gutiérrez A, de Eugenio LI, Prieto A, Martínez MJ, Martínez ÁT, Dillon AJP, Camassola M (2020) Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Appl Energ 262:114493. https://doi.org/10.1016/j.apenergy.2020.114493. (PMID: 10.1016/j.apenergy.2020.114493)
Shin SK, Hyeon JE, Joo YC, Jeong DW, You SK, Han SO (2019) Effective melanin degradation by a synergistic laccase-peroxidase enzyme complex for skin whitening and other practical applications. Int J Biol Macromol 129:181–186. https://doi.org/10.1016/j.ijbiomac.2019.02.027. (PMID: 10.1016/j.ijbiomac.2019.02.02730738166)
Taboada-Puig R, Eibes G, Lloret L, Lu-Chau TA, Feijoo G, Moreira MT, Lema JM (2016) Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds. New Biotechnol 33(1):187–195. https://doi.org/10.1016/j.nbt.2015.05.003. (PMID: 10.1016/j.nbt.2015.05.003)
Tandrup T, Frandsen KEH, Johansen KS, Berrin JG, Lo Leggio L (2018) Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans 46:1431–1447. https://doi.org/10.1042/bst20170549. (PMID: 10.1042/bst2017054930381341)
Tian S, Du JL, Bai ZS, He J, Yang XS (2019) Design and construction of synthetic cellulosome with three adaptor scaffoldins for cellulosic ethanol production from steam-exploded corn stover. Cellulose 26:8401–8415. https://doi.org/10.1007/s10570-019-02366-4. (PMID: 10.1007/s10570-019-02366-4)
Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, Mazor Y, Shapiro E, Lamed R, Bayer EA (2013) A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol Biofuels 6(1):182. https://doi.org/10.1186/1754-6834-6-182. (PMID: 10.1186/1754-6834-6-182243413313878649)
Vishnu D, Neeraj G, Swaroopini R, Shobana R, Kumar VV, Cabana H (2017) Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ Sci Pollut Res 24:17993–18009. https://doi.org/10.1007/s11356-017-9318-5. (PMID: 10.1007/s11356-017-9318-5)
Wang Z, Lv Z, Du J, Mo C, Yang X, Tian S (2014) Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover. Bioresour Technol 166:282–287. https://doi.org/10.1016/j.biortech.2014.05.044. (PMID: 10.1016/j.biortech.2014.05.04424926600)
Wu Y, Chen YY, Wei N (2020) Biocatalytic properties of cell surface display laccase for degradation of emerging contaminant acetaminophen in water reclamation. Biotechnol Bioeng 117(2):342–353. https://doi.org/10.1002/bit.27214. (PMID: 10.1002/bit.2721431654417)
Wu XY, Amanze C, Wang JS, Yu ZJ, Shen L, Wu XL, Li JK, Yu RL, Liu YD, Zeng WM (2022) Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting. Chemosphere 307(Pt 3):135859–135859. https://doi.org/10.1016/j.chemosphere.2022.135859. (PMID: 10.1016/j.chemosphere.2022.13585935987270)
Yao L, Chai M, Cui P, Geun Yoo C, Yuan J, Meng X, Yang H (2023) Mechanism of enhanced enzymatic hydrolysis performance by ethanol assisted deep eutectic solvent pretreatment- from the perspective of lignin. Bioresour Technol 385:129461. https://doi.org/10.1016/j.biortech.2023.129461. (PMID: 10.1016/j.biortech.2023.12946137423545)
معلومات مُعتمدة: 31971202 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Saccharomyces cerevisiae; Cellulosic ethanol; Cellulosome; Lignin degradation; Separate hydrolysis and fermentation; Surface display
المشرفين على المادة: 3K9958V90M (Ethanol)
9005-53-2 (Lignin)
9004-34-6 (Cellulose)
EC 1.10.3.2 (Laccase)
تواريخ الأحداث: Date Created: 20240412 Date Completed: 20240702 Latest Revision: 20240702
رمز التحديث: 20240702
DOI: 10.1007/s10529-024-03485-0
PMID: 38607604
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6776
DOI:10.1007/s10529-024-03485-0