دورية أكاديمية

The outstanding capacity of Prasiola antarctica to thrive in contrasting harsh environments relies on the constitutive protection of thylakoids and on morphological plasticity.

التفاصيل البيبلوغرافية
العنوان: The outstanding capacity of Prasiola antarctica to thrive in contrasting harsh environments relies on the constitutive protection of thylakoids and on morphological plasticity.
المؤلفون: Arzac MI; Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain., Miranda-Apodaca J; Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain., de Los Ríos A; Museo Nacional de Ciencias Naturales (MNCN-CSIC), Serrano 115 dpdo, 28006, Madrid, Spain., Castanyer-Mallol F; Research Group on Plant Biology under Mediterranean Conditions, Department of Biology, Universitat de les Illes Balears (UIB), INAGEA, Balearic Islands, Palma, Spain., García-Plazaola JI; Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain., Fernández-Marín B; Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.; Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Canary Islands, 38200, La Laguna, Spain.
المصدر: The Plant journal : for cell and molecular biology [Plant J] 2024 Jul; Vol. 119 (1), pp. 65-83. Date of Electronic Publication: 2024 Apr 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology Country of Publication: England NLM ID: 9207397 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-313X (Electronic) Linking ISSN: 09607412 NLM ISO Abbreviation: Plant J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology, c1991-
مواضيع طبية MeSH: Thylakoids*/metabolism , Photosynthesis*/physiology, Antarctic Regions ; Chlorophyceae/physiology ; Chlorophyceae/metabolism ; Xanthophylls/metabolism ; Adaptation, Physiological/physiology ; Desiccation ; Acclimatization
مستخلص: The determination of physiological tolerance ranges of photosynthetic species and of the biochemical mechanisms underneath are fundamental to identify target processes and metabolites that will inspire enhanced plant management and production for the future. In this context, the terrestrial green algae within the genus Prasiola represent ideal models due to their success in harsh environments (polar tundras) and their extraordinary ecological plasticity. Here we focus on the outstanding Prasiola antarctica and compare two natural populations living in very contrasting microenvironments in Antarctica: the dry sandy substrate of a beach and the rocky bed of an ephemeral freshwater stream. Specifically, we assessed their photosynthetic performance at different temperatures, reporting for the first time g nsd values in algae and changes in thylakoid metabolites in response to extreme desiccation. Stream population showed lower α-tocopherol content and thicker cell walls and thus, lower g nsd and photosynthesis. Both populations had high temperatures for optimal photosynthesis (around +20°C) and strong constitutive tolerance to freezing and desiccation. This tolerance seems to be related to the high constitutive levels of xanthophylls and of the cylindrical lipids di- and tri-galactosyldiacylglycerol in thylakoids, very likely related to the effective protection and stability of membranes. Overall, P. antarctica shows a complex battery of constitutive and plastic protective mechanisms that enable it to thrive under harsh conditions and to acclimate to very contrasting microenvironments, respectively. Some of these anatomical and biochemical adaptations may partially limit photosynthesis, but this has a great potential to rise in a context of increasing temperature.
(© 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
References: Abakumov, E.V., Parnikoza, I.Y., Zhianski, M., Yaneva, R., Lupachev, A.V., Andreev, M.P. et al. (2021) Ornithogenic factor of soil formation in Antarctica: a review. Eurasian Soil Science, 54, 528–540.
Aigner, S., Glaser, K., Arc, E., Holzinger, A., Schletter, M., Karsten, U. et al. (2020) Adaptation to aquatic and terrestrial environments in Chlorella vulgaris (Chlorophyta). Frontiers in Microbiology, 11, 585836.
Arisz, S.A., Heo, J.‐Y., Koevoets, I.T., Zhao, T., van Egmond, P., Meyer, A.J. et al. (2018) DIACYLGLYCEROL ACYLTRANSFERASE1 contributes to freezing tolerance. Plant Physiology, 177, 1410–1424.
Bacior, M., Harańczyk, H., Nowak, P., Kijak, P., Marzec, M., Fitas, J. et al. (2022) Low‐temperature investigation of residual water bound in free‐living Antarctic Prasiola crispa. Antarctic Science, 34, 389–400.
Bacior, M., Nowak, P., Harańczyk, H., Patryas, S., Kijak, P., Ligęzowska, A. et al. (2017) Extreme dehydration observed in Antarctic Turgidosculum complicatulum and in Prasiola crispa. Extremophiles, 21, 331–343.
Becker, E.W. (1982) Physiological studies on antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biology, 1, 99–104.
Benson, A.A., Wiser, R., Ferrari, R.A. & Miller, J.A. (1958) Photosynthesis of galactolipids. Journal of the American Chemical Society, 80, 4740.
Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis, A.R., Jr. & Long, S.P. (2001) Improved temperature response functions for models of rubisco‐limited photosynthesis. Plant, Cell and Environment, 24, 253–259.
Boisvenue, C. & Running, S.W. (2006) Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. Global Change Biology, 12, 862–882.
Broady, P.A. (1989) Survey of algae and other terrestrial biota at Edward VII peninsula, Marie Byrd Land. Antarctic Science, 1, 215–224.
Brooks, S.T., Jabour, J., van den Hoff, J. & Bergstrom, D.M. (2019) Our footprint on Antarctica competes with nature for rare ice‐free land. Nature Sustainability, 2, 185–190.
Carriquí, M., Roig‐Oliver, M., Brodribb, T.J., Coopman, R., Gill, W., Mark, K. et al. (2019) Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. The New Phytologist, 222, 1256–1270.
Chng, C.‐P., Wang, K., Ma, W., Hsia, K.J. & Huang, C. (2021) Chloroplast membrane lipid remodeling protects against dehydration by limiting membrane fusion and distortion. Plant Physiology, 188, 526–539.
Colesie, C., Walshaw, C.V., Sancho, L.G., Davey, M.P. & Gray, A. (2023) Antarctica's vegetation in a changing climate. WIREs Climate Change, 14, e810.
Davis, R.C. (1981) Structure and function of two Antarctic terrestrial moss communities. Ecological Monographs, 51, 125–143.
Dubrasquet, H., Garrido, I., Bruning, P., Reyes, J. & Guillemin, M.‐L. (2021) Building‐up knowledge on green marine macroalgae diversity in the Western Antarctic peninsula: data from two molecular markers reveals numerous species with amphipolar distribution. Cryptogamie, Algologie, 42(21–37).
Durán, J., Rodríguez, A., Heiðmarsson, S., Lehmann, J.R.K., del Moral, Á., Garrido‐Benavent, I. et al. (2021) Cryptogamic cover determines soil attributes and functioning in polar terrestrial ecosystems. Science of the Total Environment, 762, 143169.
Ernst, R., Ejsing, C.S. & Antonny, B. (2016) Homeoviscous adaptation and the regulation of membrane lipids. Journal of Molecular Biology, 428, 4776–4791.
Esteban, R., Barrutia, O., Artetxe, U., Fernández‐Marín, B., Hernández, A. & García‐Plazaola, J.I. (2015) Internal and external factors affecting photosynthetic pigment composition in plants: a meta‐analytical approach. The New Phytologist, 206, 268–280.
Fernández‐Marín, B., Arzac, M.I., López‐Pozo, M., Laza, J.M., Roach, T., Stegner, M. et al. (2021) Frozen in the dark: interplay of night‐time activity of xanthophyll cycle, xylem attributes, and desiccation tolerance in fern resistance to winter. Journal of Experimental Botany, 72, 3168–3184.
Fernández‐Marín, B., Atherton, J., Olascoaga, B., Kolari, P., Porcar‐Castell, A. & García‐Plazaola, J.I. (2018) When the sun never sets: daily changes in pigment composition in three subarctic woody plants during the summer solstice. Trees, 32, 615–630.
Fernández‐Marín, B., Gago, J., Clemente‐Moreno, M.J., Flexas, J., Gulías, J. & García‐Plazaola, J.I. (2019) Plant pigment cycles in the high‐Arctic Spitsbergen. Polar Biology, 42, 675–684.
Fernández‐Marín, B., Gulías, J., Figueroa, C.M., Iñiguez, C., Clemente‐Moreno, M.J., Nunes‐Nesi, A. et al. (2020) How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. The Plant Journal, 101, 979–1000.
Fernández‐Marín, B., López‐Pozo, M., Perera‐Castro, A.V., Arzac, M.I., Sáenz‐Ceniceros, A., Colesie, C. et al. (2019) Symbiosis at its limits: ecophysiological consequences of lichenization in the genus Prasiola in Antarctica. Annals of Botany, 124, 1211–1226.
Fernández‐Marín, B., Míguez, F., Becerril, J.M. & García‐Plazaola, J.I. (2011) Dehydration‐mediated activation of the xanthophyll cycle in darkness: is it related to desiccation tolerance? Planta, 234, 579–588.
Fernández‐Marín, B., Nadal, M., Gago, J., Fernie, A.R., López‐Pozo, M., Artetxe, U. et al. (2020) Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. The New Phytologist, 226, 741–759.
Fernández‐Marín, B., Neuner, G., Kuprian, E., Laza, J.M., García‐Plazaola, J.I. & Verhoeven, A. (2018) First evidence of freezing tolerance in a resurrection plant: insights into molecular mobility and zeaxanthin synthesis in the dark. Physiologia Plantarum, 163, 472–489.
Fernández‐Marín, B., Roach, T., Verhoeven, A. & García‐Plazaola, J.I. (2021) Shedding light on the dark side of xanthophyll cycles. The New Phytologist, 230, 1336–1344.
Flaim, G., Obertegger, U. & Guella, G. (2012) Changes in galactolipid composition of the cold freshwater dinoflagellate Borghiella dodgei in response to temperature. Hydrobiologia, 698, 285–293.
Flexas, J., Clemente‐Moreno, M.J., Bota, J., Brodribb, T.J., Gago, J., Mizokami, Y. et al. (2021) Cell wall thickness and composition are involved in photosynthetic limitation. Journal of Experimental Botany, 72, 3971–3986.
Foyer, C.H., Descourvières, P. & Kunert, K.J. (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant, Cell and Environment, 17, 507–523.
García‐Plazaola, J.I., Arzac, M.I., Brazales, L., Fernández, J., Laza, J.M., Vilas, J.L. et al. (2022) Freezing and desiccation tolerance in the Antarctic bangiophyte Pyropia endiviifolia (Rhodophyta): a chicken and egg problem? European Journal of Phycology, 58, 377–389.
García‐Plazaola, J.I. & Becerril, J.M. (1999) A rapid high‐performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochemical Analysis, 10, 307–313.
García‐Plazaola, J.I., López‐Pozo, M. & Fernández‐Marín, B. (2022) Xanthophyll cycles in the juniper haircap moss (Polytrichum juniperinum) and Antarctic hair grass (Deschampsia antarctica) on Livingston Island (South Shetland Islands, maritime Antarctica). Polar Biology, 45, 1247–1256.
Garrido‐Benavent, I., de los Ríos, A., Fernández‐Mendoza, F. & Pérez‐Ortega, S. (2018) No need for stepping stones: direct, joint dispersal of the lichen‐forming fungus Mastodia tessellata (Ascomycota) and its photobiont explains their bipolar distribution. Journal of Biogeography, 45, 213–224.
Garrido‐Benavent, I., Pérez‐Ortega, S. & de los Ríos, A. (2017) From Alaska to Antarctica: species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen‐forming fungus Mastodia tessellata. Molecular Phylogenetics and Evolution, 107, 117–131.
Gasulla, F., Barreno, E., Parages, M.L., Cámara, J., Jiménez, C., Dörmann, P. et al. (2016) The role of phospholipase D and MAPK signaling cascades in the adaption of lichen microalgae to desiccation: changes in membrane lipids and phosphoproteome. Plant & Cell Physiology, 57, 1908–1920.
Gasulla, F., García‐Plazaola, J.I., López‐Pozo, M. & Fernández‐Marín, B. (2019) Evolution, biosynthesis and protective roles of oligogalactolipids: key molecules for terrestrial photosynthesis? Environmental and Experimental Botany, 164, 135–148.
Gasulla, F., vom Dorp, K., Dombrink, I., Zähringer, U., Gisch, N., Dörmann, P. et al. (2013) The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. The Plant Journal, 75, 726–741.
González‐Herrero, S., Barriopedro, D., Trigo, R.M., López‐Bustins, J.A. & Oliva, M. (2022) Climate warming amplified the 2020 record‐breaking heatwave in the Antarctic peninsula. Communications Earth & Environment, 3, 122.
Graeve, M., Kattner, G., Wiencke, C. & Karsten, U. (2002) Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Marine Ecology Progress Series, 231, 67–74.
Grassi, G. & Magnani, F. (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell and Environment, 28, 834–849.
Grudzinski, W., Nierzwicki, L., Welc, R., Reszczynska, E., Luchowski, R., Czub, J. et al. (2017) Localization and orientation of xanthophylls in a lipid bilayer. Scientific Reports, 7, 9619.
Harley, P.C., Loreto, F., Di Marco, G. & Sharkey, T.D. (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiology, 98, 1429–1436.
Hartmann, A., Holzinger, A., Ganzera, M. & Karsten, U. (2016) Prasiolin, a new UV‐sunscreen compound in the terrestrial green macroalga Prasiola calophylla (Carmichael ex Greville) Kützing (Trebouxiophyceae, Chlorophyta). Planta, 243, 161–169.
Havaux, M. (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science, 3, 147–151.
Holzinger, A., Herburger, K., Blaas, K., Lewis, L.A. & Karsten, U. (2017) The terrestrial green macroalga Prasiola calophylla (Trebouxiophyceae, Chlorophyta): ecophysiological performance under water‐limiting conditions. Protoplasma, 254, 1755–1767.
Holzinger, A. & Karsten, U. (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Frontiers in Plant Science, 4, 327.
Holzinger, A., Karsten, U., Lütz, C. & Wiencke, C. (2006) Ultrastructure and photosynthesis in the supralittoral green macroalga Prasiola crispa from Spitsbergen (Norway) under UV exposure. Phycologia, 45, 168–177.
Huiskes, A.H.L., Gremmen, N.J.M. & Francke, J.W. (1997) The delicate stability of lichen symbiosis: comparative studies on the photosynthesis of the lichen Mastodia tesselata and its free‐living phycobiont, the alga Prasiola crispa. In: Battaglia, B., Valencia, J. & Walton, D.W.H. (Eds.) Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, pp. 234–240.
Huner, N.P.A., Öquist, G. & Sarhan, F. (1998) Energy balance and acclimation to light and cold. Trends in Plant Science, 3, 224–230.
Hüner, N.P.A., Smith, D.R., Cvetkovska, M., Zhang, X., Ivanov, A.G., Szyszka‐Mroz, B. et al. (2022) Photosynthetic adaptation to polar life: energy balance, photoprotection and genetic redundancy. Journal of Plant Physiology, 268, 153557.
Jackson, A.E. & Seppelt, R.D. (1995) The accumulation of proline in Prasiola crispa during winter in Antarctica. Physiologia Plantarum, 94, 25–30.
Jacob, A., Kirst, G.O., Wiencke, C. & Lehmann, H. (1991) Physiological responses of the antarctic green alga Prasiola crispa ssp. Antarctica to salinity stress. Journal of Plant Physiology, 139, 57–62.
Jacob, A., Lehmann, H., Kirst, G.O. & Wiencke, C. (1992) Changes in the ultrastructure of Prasiola crispa ssp. Antarctica under salinity stress. Botanica Acta: Journal of the German Botanical Society, 105, 41–46.
Jacob, A., Wiencke, C., Lehmann, H. & Kirst, G.O. (1992) Physiology and ultrastructure of desiccation in the green alga Prasiola crispa from Antarctica. Botanica Marina, 35, 297–304.
Kang, E.J., Scrosati, R.A. & Garbary, D.J. (2013) Physiological ecology of photosynthesis in Prasiola stipitata (Trebouxiophyceae) from the bay of Fundy, Canada. Phycological Research, 61, 208–216.
Kappen, L., Schroeter, B., Green, T.G.A. & Seppelt, R.D. (1998) Chlorophyll a fluorescence and CO2 exchange of Umbilicaria aprina under extreme light stress in the cold. Oecologia, 113, 325–331.
Kosugi, M., Katashima, Y., Aikawa, S., Tanabe, Y., Kudoh, S., Kashino, Y. et al. (2010) Comparative study on the photosynthetic properties of Prasiola (chlorophyceae) and Nostoc (cyanophyceae) from antarctic and non‐antarctic sites. Journal of Phycology, 46, 466–476.
Kosugi, M., Ozawa, S.‐I., Takahashi, Y., Kamei, Y., Itoh, S., Kudoh, S. et al. (2020) Red‐shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. Biochimica et Biophysica Acta, 1861, 148139.
Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K. et al. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354, 857–861.
Leblond, J.D., Dahmen, J.L. & Evens, T.J. (2010) Mono‐ and digalactosyldiacylglycerol composition of dinoflagellates. IV. Temperature‐induced modulation of fatty acid regiochemistry as observed by electrospray ionization/mass spectrometry. European Journal of Phycology, 45, 13–18.
Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F. et al. (2012) Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31, 1–46.
Levin, G., Kulikovsky, S., Liveanu, V., Eichenbaum, B., Meir, A., Isaacson, T. et al. (2021) The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. The Plant Journal, 106, 1260–1277.
López‐Pozo, M., Flexas, J., Gulías, J., Carriquí, M., Nadal, M., Perera‐Castro, A.V. et al. (2019) A field portable method for the semi‐quantitative estimation of dehydration tolerance of photosynthetic tissues across distantly related land plants. Physiologia Plantarum, 167, 540–555.
Lud, D., Buma, A.G.J., Van De Poll, W., Moerdijk, T.C.W. & Huiskes, A.H.L. (2001) DNA damage and photosynthetic performance in the antarctic terrestrial alga Prasiola crispa ssp. antarctica (Chlorophyta) under manipulated UV‐B radiation. Journal of Phycology, 37, 459–467.
Lukashanets, D.A., Convey, P., Borodin, O.I., Miamin, V.Y., Hihiniak, Y.H., Gaydashov, A.A. et al. (2021) Eukarya biodiversity in the Thala Hills, East Antarctica. Antarctic Science, 33, 605–623.
Lukashanets, D.A., Hihiniak, Y.H. & Miamin, V.Y. (2022) Extremely high abundances of Prasiola crispa‐associated micrometazoans in East Antarctica. Polar Research, 41, 17781.
Magney, T.S., Logan, B.A., Reblin, J.S., Boelman, N.T., Eitel, J.U.H., Greaves, H.E. et al. (2017) Xanthophyll cycle activity in two prominent arctic shrub species. Arctic, Antarctic, and Alpine Research, 49, 277–289.
Mendiola‐Morgenthaler, L., Eichenberger, W. & Boschetti, A. (1985) Isolation of chloroplast envelopes from Chlamydomonas. Lipid and polypeptide composition. Plant Science, 41, 97–104.
Moniz, M.B.J., Rindi, F., Novis, P.M., Broady, P.A. & Guiry, M.D. (2012) Molecular phylogeny of antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. Journal of Phycology, 48, 940–955.
Montero, O., Velasco, M., Miñón, J., Marks, E.A.N., Sanz‐Arranz, A. & Rad, C. (2021) Differential membrane lipid profiles and vibrational spectra of three edaphic algae and one cyanobacterium. International Journal of Molecular Sciences, 22, 11277.
Morita, R.Y. (1975) Psychrophilic bacteria. Bacteriological Reviews, 39, 144–167.
Muggia, L., Leavitt, S. & Barreno, E. (2018) The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta). Phycologia, 57, 503–524.
Nadal, M., Perera‐Castro, A.V., Gulías, J., Farrant, J.M. & Flexas, J. (2021) Resurrection plants optimize photosynthesis despite very thick cell walls by means of chloroplast distribution. Journal of Experimental Botany, 72, 2600–2610.
Ochyra, R., Lewis Smith, R.I. & Bednarek‐Ochyra, H. (2008) The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press.
Ohtani, S., Kanda, H. & Ino, Y. (1990) Microclimate data measured at the Yukidori Valley, Langhovde, Antarctica in 1988–1989. JARE Data Reports, 152, 1–216.
Ort, D.R. (2001) When there is too much light. Plant Physiology, 125, 29–32.
Øvstedal, D.O. & Lewis Smith, R.I. (2001) Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press.
Peat, H.J., Clarke, A. & Convey, P. (2007) Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 132–146.
Pellizzari, F., Silva, M.C., Silva, E.M., Medeiros, A., Oliveira, M.C., Yokoya, N.S. et al. (2017) Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biology, 40, 1671–1685.
Perera‐Castro, A.V. & Flexas, J. (2023) The ratio of electron transport to assimilation (ETR/AN): underutilized but essential for assessing both equipment's proper performance and plant status. Planta, 257, 29.
Perera‐Castro, A.V., Flexas, J., González‐Rodríguez, Á.M. & Fernández‐Marín, B. (2021) Photosynthesis on the edge: photoinhibition, desiccation and freezing tolerance of Antarctic bryophytes. Photosynthesis Research, 149, 135–153.
Perera‐Castro, A.V., Waterman, M.J., Turnbull, J.D., Ashcroft, M.B., McKinley, E., Watling, J.R. et al. (2020) It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Frontiers in Plant Science, 11, 1178.
Pérez‐Ortega, S., de los Ríos, A., Crespo, A. & Sancho, L.G. (2010) Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). American Journal of Botany, 97, 738–752.
Platt, T., Gallegos, C.L. & Harrison, W.G. (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38, 687–701.
Ralph, P.J. & Gademann, R. (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany, 82, 222–237.
Ramírez, R., Carmona, J. & Martorell, C. (2007) Microhabitat and morphometric variation in two species of Prasiola (Prasiolales, Chlorophyta) from streams in central Mexico. Aquatic Ecology, 41, 161–168.
Richter, D., Matuła, J., Urbaniak, J., Waleron, M. & Czerwik‐Marcinkowska, J. (2017) Molecular, morphological and ultrastructural characteristics of Prasiola crispa (Lightfoot) Kützing (Chlorophyta) from Spitsbergen (Arctic). Polar Biology, 40, 379–397.
Rindi, F., McIvor, L., Sherwood, A.R., Friedl, T., Guiry, M.D. & Sheath, R.G. (2007) Molecular phylogeny of the green algal order Prasiolales (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 43, 811–822.
Robinson, S.A., Wasley, J. & Tobin, A.K. (2003) Living on the edge – plants and global change in continental and maritime Antarctica. Global Change Biology, 9, 1681–1717.
Roig‐Oliver, M., Douthe, C., Bota, J. & Flexas, J. (2021) Cell wall thickness and composition are related to photosynthesis in Antarctic mosses. Physiologia Plantarum, 173, 1914–1925.
Rolland, N., Ferro, M., Seigneurin‐Berny, D., Garin, J., Block, M. & Joyard, J. (2009) The chloroplast envelope proteome and lipidome. In: Sandelius, A.S. & Aronsson, H. (Eds.) The chloroplast: interactions with the environment. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 41–88.
Sanders, W.B. & Masumoto, H. (2021) Lichen algae: the photosynthetic partners in lichen symbioses. The Lichenologist, 53, 347–393.
Sato, N., Tsuzuki, M. & Kawaguchi, A. (2003) Glycerolipid synthesis in Chlorella kessleri 11h: I. Existence of a eukaryotic pathway. Biochimica et Biophysica Acta, 1633, 27–34.
Schroeter, B., Green, T.G.A., Kulle, D., Pannewitz, S., Schlensog, M. & Sancho, L.G. (2012) The moss Bryum argenteum var. muticum Brid. Is well adapted to cope with high light in continental Antarctica. Antarctic Science, 24, 281–291.
Sharkey, T.D. (2016) What gas exchange data can tell us about photosynthesis. Plant, Cell and Environment, 39, 1161–1163.
Shiva, S., Vu, H.S., Roth, M.R., Zhou, Z., Marepally, S.R., Nune, D.S. et al. (2013) Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry. In: Munnik, T. & Heilmann, I. (Eds.) Plant lipid signaling protocols. Totowa, NJ: Humana Press, pp. 79–91.
Smith, V.R. & Gremmen, N.J.M. (2001) Photosynthesis in a sub‐Antarctic shore‐zone lichen. The New Phytologist, 149, 291–299.
Spain, O. & Funk, C. (2022) Detailed characterization of the cell wall structure and composition of Nordic green microalgae. Journal of Agricultural and Food Chemistry, 70, 9711–9721.
Tomás, M., Flexas, J., Copolovici, L., Galmés, J., Hallik, L., Medrano, H. et al. (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. Journal of Experimental Botany, 64, 2269–2281.
Verhoeven, A., García‐Plazaola, J.I. & Fernández‐Marín, B. (2018) Shared mechanisms of photoprotection in photosynthetic organisms tolerant to desiccation or to low temperature. Environmental and Experimental Botany, 154, 66–79.
Vieler, A., Wilhelm, C., Goss, R., Süß, R. & Schiller, J. (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI‐TOF MS and TLC. Chemistry and Physics of Lipids, 150, 143–155.
Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., Cernusak, L.A., Domingues, T.F. et al. (2014) The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta‐analysis and modeling study. Ecology and Evolution, 4, 3218–3235.
Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.‐E. et al. (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing‐induced lipid changes in Arabidopsis. The Journal of Biological Chemistry, 277, 31994–32002.
Yoshihara, A. & Kobayashi, K. (2022) Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. Journal of Experimental Botany, 73, 2735–2750.
Yu, L., Zhou, C., Fan, J., Shanklin, J. & Xu, C. (2021) Mechanisms and functions of membrane lipid remodeling in plants. The Plant Journal, 107, 37–53.
Zębek, E., Napiórkowska‐Krzebietke, A., Świątecki, A. & Górniak, D. (2021) Biodiversity of periphytic cyanobacteria and algae assemblages in polar region: a case study of the vicinity of Arctowski polish Antarctic Station (King George Island, Antarctica). Biodiversity and Conservation, 30, 2751–2771.
معلومات مُعتمدة: IT1648-22 Eusko Jaurlaritza; PGC2018-093824-B-C41 Ministerio de Ciencia e Innovación; PGC2018-093824-B-C44 Ministerio de Ciencia e Innovación; PID2022-139455NB-C32 Ministerio de Ciencia e Innovación; PID2019-105469RB-C22 Ministerio de Ciencia e Innovación; PRE-2019-090011 Ministerio de Ciencia e Innovación; RYC2021-031321-I Ministerio de Ciencia e Innovación
فهرسة مساهمة: Keywords: Prasiola antarctica; Antarctica; desiccation; freezing; morphology; photosynthesis; plasticity; tolerance; trigalactosyldiacylglycerol
المشرفين على المادة: 0 (Xanthophylls)
تواريخ الأحداث: Date Created: 20240412 Date Completed: 20240629 Latest Revision: 20240629
رمز التحديث: 20240630
DOI: 10.1111/tpj.16742
PMID: 38608130
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-313X
DOI:10.1111/tpj.16742