دورية أكاديمية

Blimp-1 and c-Maf regulate immune gene networks to protect against distinct pathways of pathobiont-induced colitis.

التفاصيل البيبلوغرافية
العنوان: Blimp-1 and c-Maf regulate immune gene networks to protect against distinct pathways of pathobiont-induced colitis.
المؤلفون: Alvarez-Martinez M; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK., Cox LS; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK., Pearson CF; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK., Branchett WJ; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK., Chakravarty P; Computational Biology Laboratory, The Francis Crick Institute, London, UK., Wu X; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK., Slawinski H; Advanced Sequencing Facility, The Francis Crick Institute, London, UK., Al-Dibouni A; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK., Samelis VA; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK., Gabryšová L; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK., Priestnall SL; Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.; Experimental Histopathology, The Francis Crick Institute, London, UK., Suárez-Bonnet A; Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.; Experimental Histopathology, The Francis Crick Institute, London, UK., Mikolajczak A; Experimental Histopathology, The Francis Crick Institute, London, UK., Briscoe J; Developmental Dynamics Laboratory, The Francis Crick Institute, London, UK., Powrie F; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK., O'Garra A; Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK. Anne.OGarra@crick.ac.uk.; National Heart and Lung Institute, Imperial College London, London, UK. Anne.OGarra@crick.ac.uk.
المصدر: Nature immunology [Nat Immunol] 2024 May; Vol. 25 (5), pp. 886-901. Date of Electronic Publication: 2024 Apr 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature America Inc. c2000-
مواضيع طبية MeSH: Positive Regulatory Domain I-Binding Factor 1*/genetics , Positive Regulatory Domain I-Binding Factor 1*/metabolism , Proto-Oncogene Proteins c-maf*/genetics , Colitis*/immunology , Colitis*/genetics , Mice, Knockout* , Helicobacter hepaticus*/immunology, Animals ; Mice ; Humans ; Helicobacter Infections/immunology ; Mice, Inbred C57BL ; Intestinal Mucosa/immunology ; Intestinal Mucosa/pathology ; Intestinal Mucosa/microbiology ; Inflammatory Bowel Diseases/immunology ; Inflammatory Bowel Diseases/genetics ; Gene Expression Regulation ; Disease Models, Animal
مستخلص: Intestinal immune responses to microbes are controlled by the cytokine IL-10 to avoid immune pathology. Here, we use single-cell RNA sequencing of colon lamina propria leukocytes (LPLs) along with RNA-seq and ATAC-seq of purified CD4 + T cells to show that the transcription factors Blimp-1 (encoded by Prdm1) and c-Maf co-dominantly regulate Il10 while negatively regulating proinflammatory cytokines in effector T cells. Double-deficient Prdm1 fl/fl Maf fl/fl Cd4 Cre mice infected with Helicobacter hepaticus developed severe colitis with an increase in T H 1/NK/ILC1 effector genes in LPLs, while Prdm1 fl/fl Cd4 Cre and Maf fl/fl Cd4 Cre mice exhibited moderate pathology and a less-marked type 1 effector response. LPLs from infected Maf fl/fl Cd4 Cre mice had increased type 17 responses with increased Il17a and Il22 expression and an increase in granulocytes and myeloid cell numbers, resulting in increased T cell-myeloid-neutrophil interactions. Genes over-expressed in human inflammatory bowel disease showed differential expression in LPLs from infected mice in the absence of Prdm1 or Maf, revealing potential mechanisms of human disease.
(© 2024. The Author(s).)
References: Fang, D. & Zhu, J. Molecular switches for regulating the differentiation of inflammatory and IL-10-producing anti-inflammatory T-helper cells. Cell. Mol. Life Sci. 77, 289–303 (2019). (PMID: 3143223610.1007/s00018-019-03277-0)
Izcue, A., Coombes, J. L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu Rev. Immunol. 27, 313–338 (2009). (PMID: 1930204310.1146/annurev.immunol.021908.132657)
Neumann, C., Scheffold, A. & Rutz, S. Functions and regulation of T cell-derived interleukin-10. Semin. Immunol. 44, 101344 (2019). (PMID: 3172746510.1016/j.smim.2019.101344)
Ouyang, W. & O’Garra, A. IL-10 family cytokines IL-10 and IL-22: from basic xcience to clinical translation. Immunity 50, 871–891 (2019). (PMID: 3099550410.1016/j.immuni.2019.03.020)
Saraiva, M., Vieira, P. & O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 217, e20190418 (2020). (PMID: 3161125110.1084/jem.20190418)
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993). (PMID: 840291110.1016/0092-8674(93)80068-P)
Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998). (PMID: 978452610865210.1128/IAI.66.11.5224-5231.1998)
Kullberg, M. C. et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect. Immun. 66, 5157–5166 (1998). (PMID: 978451710864310.1128/IAI.66.11.5157-5166.1998)
Roers, A. et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J. Exp. Med. 200, 1289–1297 (2004). (PMID: 15534372221191210.1084/jem.20041789)
Engelhardt, K. R. & Grimbacher, B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr. Top. Microbiol. Immunol. 380, 1–18 (2014). (PMID: 25004811)
Uhlig, H. H. & Powrie, F. Translating immunology into therapeutic concepts for inflammatory bowel disease. Annu. Rev. Immunol. 36, 755–781 (2018). (PMID: 2967747210.1146/annurev-immunol-042617-053055)
Ellinghaus, D. et al. Association between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and functional studies. Gastroenterology 145, 339–347 (2013). (PMID: 2362410810.1053/j.gastro.2013.04.040)
Gabrysova, L. et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4 + T cells. Nat. Immunol. 19, 497–507 (2018). (PMID: 29662170598804110.1038/s41590-018-0083-5)
Zhang, H. et al. An IL-27-driven transcriptional network identifies regulators of IL-10 expression across T helper cell subsets. Cell Rep. 33, 108433 (2020). (PMID: 33238123777105210.1016/j.celrep.2020.108433)
Cox, L. S. et al. Blimp-1 and c-Maf regulate Il10 and negatively regulate common and unique proinflammatory gene networks in IL-12 plus IL-27-driven T helper-1 cells. Wellcome Open Res. 8, 403 (2023). (PMID: 380741971070969010.12688/wellcomeopenres.19680.2)
Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012). (PMID: 23021777350348710.1016/j.cell.2012.09.016)
Neumann, C. et al. c-Maf-dependent T reg cell control of intestinal T H 17 cells and IgA establishes host–microbiota homeostasis. Nat. Immunol. 20, 471–481 (2019). (PMID: 3077824110.1038/s41590-019-0316-2)
Xu, M. et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018). (PMID: 29414937581434610.1038/nature25500)
Imbratta, C. et al. Maf deficiency in T cells dysregulates T reg –T H 17 balance leading to spontaneous colitis. Sci. Rep. 9, 6135 (2019). (PMID: 30992496646801010.1038/s41598-019-42486-2)
Cimmino, L. et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. J. Immunol. 181, 2338–2347 (2008). (PMID: 1868492310.4049/jimmunol.181.4.2338)
Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006). (PMID: 1656572010.1038/ni1321)
Martins, G. A., Cimmino, L., Liao, J., Magnusdottir, E. & Calame, K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J. Exp. Med. 205, 1959–1965 (2008). (PMID: 18725523252619110.1084/jem.20080526)
Salehi, S. et al. Blimp-1 contributes to intestinal mucosa homeostasis by limiting the number of IL17-producing CD4 + T cells. J. Immunol. 189, 5682–5693 (2012). (PMID: 2316213010.4049/jimmunol.1201966)
Heinemann, C. et al. IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4 + T cells by inducing Blimp1. Nat. Commun. 5, 3770 (2014). (PMID: 2479671910.1038/ncomms4770)
Ogawa, C. et al. Blimp-1 functions as a molecular switch to prevent inflammatory activity in Foxp3 + RORγt + regulatory T cells. Cell Rep. 25, 19–28.e5 (2018). (PMID: 30282028623754810.1016/j.celrep.2018.09.016)
Bankoti, R. et al. Differential regulation of effector and regulatory T cell function by Blimp1. Sci. Rep. 7, 12078 (2017). (PMID: 28935958560871410.1038/s41598-017-12171-3)
Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization. J. Immunol. 182, 6226–6236 (2009). (PMID: 1941477610.4049/jimmunol.0900123)
Aschenbrenner, D. et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut 70, 1023–1036 (2021). (PMID: 3303705710.1136/gutjnl-2020-321731)
Friedrich, M. et al. IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021). (PMID: 34675383860473010.1038/s41591-021-01520-5)
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018). (PMID: 29590092604774110.1038/nature25986)
Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304 (2011). (PMID: 2137897610.1038/ni.2006)
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009). (PMID: 1983308910.1016/j.immuni.2009.08.020)
Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). (PMID: 19836068279682610.1016/j.cell.2009.09.033)
Gu, Y. et al. Intestinal lamina propria supports acquired eTreg suppressor function. Preprint at https://doi.org/10.1101/2022.08.26.505428 (2023).
Kullberg, M. C. et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med. 203, 2485–2494 (2006). (PMID: 17030948211811910.1084/jem.20061082)
Maloy, K. J. et al. CD4 + CD25 + T R cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197, 111–119 (2003). (PMID: 12515818219379810.1084/jem.20021345)
Neumann, C. et al. Role of Blimp-1 in programing Th effector cells into IL-10 producers. J. Exp. Med. 211, 1807–1819 (2014). (PMID: 25073792414474410.1084/jem.20131548)
Argmann, C. et al. Biopsy and blood-based molecular biomarker of inflammation in IBD. Gut 72, 1271–1287 (2023). (PMID: 3610915210.1136/gutjnl-2021-326451)
Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020). (PMID: 32103191787136610.1038/s41586-020-2025-2)
Ahlers, J. et al. A Notch/STAT3-driven Blimp-1/c-Maf-dependent molecular switch induces IL-10 expression in human CD4 + T cells and is defective in Crohn’s disease patients. Mucosal Immunol. 15, 480–490 (2022). (PMID: 35169232903852510.1038/s41385-022-00487-x)
Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RB hi CD4 + T cells. Immunity 1, 553–562 (1994). (PMID: 760028410.1016/1074-7613(94)90045-0)
Griseri, T. et al. Granulocyte macrophage colony-stimulating factor-activated eosinophils promote Interleukin-23 driven chronic colitis. Immunity 43, 187–199 (2015). (PMID: 26200014451850010.1016/j.immuni.2015.07.008)
McGeachy, M. J. & Cua, D. J. The link between IL-23 and Th17 cell-mediated immune pathologies. Semin. Immunol. 19, 372–376 (2007). (PMID: 1831905410.1016/j.smim.2007.10.012)
Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000). (PMID: 1111438310.1016/S1074-7613(00)00070-4)
Rutz, S. et al. Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in T H 17 cells. Nat. Immunol. 12, 1238 (2011). (PMID: 2200182810.1038/ni.2134)
West, N. R. et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 23, 579–589 (2017). (PMID: 28368383542044710.1038/nm.4307)
Harrington, L. E. et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005). (PMID: 1620007010.1038/ni1254)
Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004–1019 (2018). (PMID: 3056687910.1016/j.immuni.2018.12.001)
Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015). (PMID: 25924064449898410.1038/nature14452)
van der Veeken, J. et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced T reg cells. Immunity 55, 1173–1184.e7 (2022). (PMID: 35700740988588610.1016/j.immuni.2022.05.010)
Singhania, A. et al. Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nat. Commun. 10, 2887 (2019). (PMID: 31253760659904410.1038/s41467-019-10601-6)
Wende, H. et al. The transcription factor c-Maf controls touch receptor development and function. Science 335, 1373–1376 (2012). (PMID: 2234540010.1126/science.1214314)
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). (PMID: 24097267395982510.1038/nmeth.2688)
Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinf. 15, 182 (2014). (PMID: 10.1186/1471-2105-15-182)
Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1, 895–905 (2012). (PMID: 24832523400980510.3390/biology1030895)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Hartley, S. W. & Mullikin, J. C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-seq experiments. BMC Bioinf. 16, 224 (2015). (PMID: 10.1186/s12859-015-0670-5)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology https://bioconductor.org/packages/topGO (2010).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).
Picard toolkit (Broad Institute, 2018); http://broadinstitute.github.io/picard.
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 18798982259271510.1186/gb-2008-9-9-r137)
Stark, R. & Brown, G. DiffBind: differential binding analysis of ChIP-seq peak data (Bioconductor, 2011); http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf.
Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014). (PMID: 25150836440430810.1038/nbt.2931)
Gontarz, P. et al. Comparison of differential accessibility analysis strategies for ATAC-seq data. Sci. Rep. 10, 10150 (2020). (PMID: 32576878731146010.1038/s41598-020-66998-4)
Yin, T., Cook, D. & Lawrence, M. ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol. 13, R77 (2012). (PMID: 22937822405374510.1186/gb-2012-13-8-r77)
Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016). (PMID: 2710248410.1126/science.aad2035)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170)
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). (PMID: 19261174269099610.1186/gb-2009-10-3-r25)
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019). (PMID: 30954475685361210.1016/j.cels.2019.03.003)
Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 1091–1107.e17 (2018). (PMID: 2947490910.1016/j.cell.2018.02.001)
Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021). (PMID: 33597522788987110.1038/s41467-021-21246-9)
Palmer, N. P. et al. Concordance between gene expression in peripheral whole blood and colonic tissue in children with inflammatory bowel disease. PLoS One 14, e0222952 (2019). (PMID: 31618209679542710.1371/journal.pone.0222952)
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559 (2008). (PMID: 10.1186/1471-2105-9-559)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; FC001126 United Kingdom ARC_ Arthritis Research UK; FC001126 United Kingdom WT_ Wellcome Trust
المشرفين على المادة: EC 2.1.1.- (Positive Regulatory Domain I-Binding Factor 1)
0 (Proto-Oncogene Proteins c-maf)
0 (Prdm1 protein, mouse)
0 (Maf protein, mouse)
تواريخ الأحداث: Date Created: 20240412 Date Completed: 20240502 Latest Revision: 20240522
رمز التحديث: 20240522
مُعرف محوري في PubMed: PMC11065689
DOI: 10.1038/s41590-024-01814-z
PMID: 38609547
قاعدة البيانات: MEDLINE
الوصف
تدمد:1529-2916
DOI:10.1038/s41590-024-01814-z