دورية أكاديمية

Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands.

التفاصيل البيبلوغرافية
العنوان: Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands.
المؤلفون: Eldridge DJ; Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia., Ding J; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China. jingyiding@bnu.edu.cn., Dorrough J; Department of Planning and Environment, Merimbula, New South Wales, Australia.; Fenner School of Environment & Society, Australian National University, Canberra, Australian Capital Territory, Australia., Delgado-Baquerizo M; Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain., Sala O; Schools of Life Sciences, School of Sustainability, and Global Drylands Center, Arizona State University, Tempe, AZ, USA., Gross N; Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France., Le Bagousse-Pinguet Y; Aix Marseille Univ, CNRS, Avignon Université, IRD, IMBE, Aix-en-Provence, France., Mallen-Cooper M; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden., Saiz H; Departamento de Ciencias Agrarias y Medio Natural, Escuela Politécnica Superior, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Huesca, Spain., Asensio S; Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain., Ochoa V; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain., Gozalo B; Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain., Guirado E; Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain., García-Gómez M; Departamento de Ingeniería y Morfología del Terreno, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain., Valencia E; Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain., Martínez-Valderrama J; Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain.; Estación Experimental de Zonas Áridas (EEZA), CSIC, Campus UAL, Almería, Spain., Plaza C; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain., Abedi M; Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran., Ahmadian N; Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran., Ahumada RJ; Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Valle Viejo, Argentina., Alcántara JM; Instituto Interuniversitario de Investigación del Sistema Tierra de Andalucía, Universidad de Jaén, Jaén, Spain., Amghar F; Laboratoire Biodiversité, Biotechnologie, Environnement et Développement Durable (Biodev), Université M'hamed Bougara de Boumerdès, Boumerdès, Algeria., Azevedo L; Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil., Ben Salem F; Laboratory of Eremology and Combating Desertification (LR16IRA01), IRA, Institut des Régions Arides Medenine, Medenine, Tunisia., Berdugo M; Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain.; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland., Blaum N; Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany., Boldgiv B; Laboratory of Ecological and Evolutionary Synthesis, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia., Bowker M; School of Forestry, Northern Arizona University, Flagstaff, AZ, USA.; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA., Bran D; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Bariloche, Bariloche, Argentina., Bu C; Institute of Soil and Water Conservation, Northwest A & F University, Yangling, China.; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China., Canessa R; Plant Ecology Group, Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany.; Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany.; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany., Castillo-Monroy AP; Grupo de Investigación en Ecología Evolutiva en los Trópicos-EETROP- Universidad de las Américas, Quito, Ecuador., Castro I; Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Simón Rodríguez, Caracas, Venezuela., Castro-Quezada P; Grupo de Ecología Forestal y Agroecosistemas, Facultad de Ciencias Agropecuarias, Carrera de Agronomía, Universidad de Cuenca, Cuenca, Ecuador., Cesarz S; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.; Institute of Biology, Leipzig University, Leipzig, Germany., Chibani R; Laboratory of Eremology and Combating Desertification (LR16IRA01), IRA, Institut des Régions Arides Medenine, Medenine, Tunisia., Conceição AA; Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil., Darrouzet-Nardi A; Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA., Davila YC; Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia., Deák B; HUN-REN 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary., Díaz-Martínez P; Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain., Donoso DA; Grupo de Investigación en Ecología Evolutiva en los Trópicos-EETROP- Universidad de las Américas, Quito, Ecuador., Dougill AD; University of York, York, UK., Durán J; Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain., Eisenhauer N; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.; Institute of Biology, Leipzig University, Leipzig, Germany., Ejtehadi H; Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran., Espinosa CI; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador., Fajardo A; Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Talca, Chile., Farzam M; Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran., Foronda A; Veterinary Faculty, University of Zaragoza, Zaragoza, Spain., Franzese J; Investigaciones de Ecología en Ambientes Antropizados, Laboratorio Ecotono, INIBIOMA (Universidad Nacional del Comahue, CONICET), Bariloche, Argentina., Fraser LH; Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada., Gaitán J; Universidad Nacional de Luján-CONICET, Luján, Argentina., Geissler K; Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany., Gonzalez SL; Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET), Universidad Nacional del Comahue, Neuquén, Argentina., Gusman-Montalvan E; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador., Hernández RM; Instituto de Estudios Científicos y Tecnológicos (IDECYT), Universidad Simón Rodríguez, Caracas, Venezuela., Hölzel N; Institute of Landscape Ecology, University of Münster, Münster, Germany., Hughes FM; Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil., Jadan O; Grupo de Ecología Forestal y Agroecosistemas, Facultad de Ciencias Agropecuarias, Carrera de Agronomía, Universidad de Cuenca, Cuenca, Ecuador., Jentsch A; Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany., Ju M; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China., Kaseke KF; Earth Research Institute, University of California, Santa Barbara, CA, USA., Köbel M; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal., Lehmann A; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany., Liancourt P; Plant Ecology Group, Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany.; State Museum of Natural History Stuttgart, Stuttgart, Germany., Linstädter A; Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany., Louw MA; Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa., Ma Q; Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China., Mabaso M; Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa., Maggs-Kölling G; Gobabeb - Namib Research Institute, Walvis Bay, Namibia., Makhalanyane TP; Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa., Issa OM; Institute of Ecology and Environmental Sciences of Paris, SU/IRD/CNRS/INRAE/UPEC, Bondy, France., Marais E; Gobabeb - Namib Research Institute, Walvis Bay, Namibia., McClaran M; School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA., Mendoza B; Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain., Mokoka V; Risk and Vulnerability Science Centre, University of Limpopo, Mankweng, South Africa., Mora JP; Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Talca, Chile., Moreno G; INDEHESA, Forestry School, Universidad de Extremadura, Plasencia, Spain., Munson S; US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA., Nunes A; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal., Oliva G; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Bariloche, Bariloche, Argentina., Oñatibia GR; Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina., Osborne B; Department of Environment and Society, Utah State University, Moab, UT, USA., Peter G; Universidad Nacional de Río Negro, Sede Atlántica, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), CONICET, Viedma, Argentina., Pierre M; Normandie Universite, Unirouen, Inrae, Ecodiv, Rouen, France., Pueyo Y; Instituto Pirenaico de Ecología (IPE, CSIC), Zaragoza, Spain., Emiliano Quiroga R; Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Valle Viejo, Argentina., Reed S; US Geological Survey, Southwest Biological Science Center, Moab, UT, USA., Rey A; Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain., Rey P; Instituto Interuniversitario de Investigación del Sistema Tierra de Andalucía, Universidad de Jaén, Jaén, Spain., Gómez VMR; Instituto de Ecología, A.C, Chihuahua, Mexico., Rolo V; INDEHESA, Forestry School, Universidad de Extremadura, Plasencia, Spain., Rillig MC; Institute of Biology, Freie Universität Berlin, Berlin, Germany., le Roux PC; Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa., Ruppert JC; Plant Ecology Group, Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany., Salah A; Al Quds University, Abu Dis, Palestine., Sebei PJ; Mara Research Station, Limpopo Department of Agriculture and Rural Development, Makhado, South Africa., Sharkhuu A; Laboratory of Ecological and Evolutionary Synthesis, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia., Stavi I; The Dead Sea and Arava Science Center, Yotvata, Israel.; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel., Stephens C; Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada., Teixido AL; Departmento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain., Thomas AD; Department of Geography and Earth Science, Aberystwyth University, Aberystwyth, UK., Tielbörger K; Plant Ecology Group, Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany., Robles ST; Universidad Nacional de Río Negro, Sede Atlántica, Centro de Estudios Ambientales desde la NorPatagonia (CEANPa), CONICET, Viedma, Argentina., Travers S; Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia., Valkó O; HUN-REN 'Lendület' Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary., van den Brink L; Plant Ecology Group, Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany., Velbert F; Institute of Landscape Ecology, University of Münster, Münster, Germany., von Heßberg A; Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany., Wamiti W; Zoology Department, National Museums of Kenya, Nairobi, Kenya., Wang D; Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China., Wang L; Department of Earth and Environmental Sciences, Indiana University Indianapolis (IUI), Indianapolis, IN, USA., Wardle GM; Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia., Yahdjian L; Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Buenos Aires, Argentina., Zaady E; Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Tel Aviv, Israel.; Kaye College of Education, Be'er Sheva, Israel., Zhang Y; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China., Zhou X; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China., Maestre FT; Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
المصدر: Nature plants [Nat Plants] 2024 May; Vol. 10 (5), pp. 760-770. Date of Electronic Publication: 2024 Apr 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group, a division of Macmillan Publishers Limited Country of Publication: England NLM ID: 101651677 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2055-0278 (Electronic) Linking ISSN: 20550278 NLM ISO Abbreviation: Nat Plants Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London, UK] : Nature Publishing Group, a division of Macmillan Publishers Limited, [2015]-
مواضيع طبية MeSH: Herbivory* , Soil*/chemistry, Plants ; Ecosystem ; Desert Climate ; Animals
مستخلص: Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Erratum in: Nat Plants. 2024 May;10(5):829. doi: 10.1038/s41477-024-01708-w. (PMID: 38689079)
References: Thiery, J. M., d’Herbes, J. M. & Valentin, C. A model simulating the genesis of banded vegetation patterns in Niger. J. Ecol. 459, 497–507 (1995). (PMID: 10.2307/2261602)
Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999). (PMID: 1037026310.1016/S0169-5347(99)01612-2)
Tongway, D. J. & Ludwig, J. A. Small-scale resource heterogeneity in semi-arid landscapes. Pac. Conserv. Biol. 1, 201 (1994). (PMID: 10.1071/PC940201)
Ochoa‐Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018). (PMID: 10.1111/1365-2745.12871)
Alary, V., Lasseur, J., Frija, A. & Gautier, D. Assessing the sustainability of livestock socio-ecosystems in the drylands through a set of indicators. Agric. Syst. 198, 103389 (2022). (PMID: 10.1016/j.agsy.2022.103389)
Eldridge, D. J., Delgado‐Baquerizo, M., Travers, S. K., Val, J. & Oliver, I. Do grazing intensity and herbivore type affect soil health? Insights from a semi‐arid productivity gradient. J. Appl. Ecol. 54, 976–985 (2017). (PMID: 10.1111/1365-2664.12834)
Middleton, N. Rangeland management and climate hazards in drylands: dust storms, desertification and the overgrazing debate. Nat. Hazards 92, 57–70 (2018). (PMID: 10.1007/s11069-016-2592-6)
Ding, J. & Eldridge, D. J. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 459, 1–11 (2020).
Cai, Y. et al. The fertile island effect collapses under extreme overgrazing: evidence from a shrub-encroached grassland. Plant Soil 448, 201–212 (2020). (PMID: 10.1007/s11104-020-04426-2)
Pei, S., Fu, H., Wan, C., Chen, Y. & Sosebee, R. E. Observations on changes in soil properties in grazed and nongrazed areas of Alxa Desert Steppe, Inner Mongolia. Arid Land Res. Manag. 20, 161–175 (2006). (PMID: 10.1080/15324980600549257)
Allington, G. R. & Valone, T. Islands of fertility: a byproduct of grazing? Ecosystems 17, 127–141 (2014). (PMID: 10.1007/s10021-013-9711-y)
Maestre, F. T. et al. Grazing and ecosystem service delivery in global drylands. Science 378, 915–920 (2022). (PMID: 3642328510.1126/science.abq4062)
Schade, J. D. & Hobbie, S. E. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73, 541–553 (2005). (PMID: 10.1007/s10533-004-1718-1)
Ridolfi, L., Laio, F. & D’Odorico, P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 13, 5 (2008). (PMID: 10.5751/ES-02302-130105)
Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Ann. Rev. Ecol. Evol. Syst. 47, 215–237 (2016). (PMID: 10.1146/annurev-ecolsys-121415-032311)
Charley, J. L. & West, N. E. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J. Ecol. 63, 945–963 (1975). (PMID: 10.2307/2258613)
DeLuca, T. H. & Zackrisson, O. Enhanced soil fertility under Juniperus communis in arctic ecosystems. Plant Soil 294, 147–155 (2007). (PMID: 10.1007/s11104-007-9242-4)
Whitford, W. G., Anderson, J. & Rice, P. M. Stemflow contribution to the ‘fertile island’ effect in creosotebush, Larrea tridentata. J. Arid Environ. 35, 451–457 (1997). (PMID: 10.1006/jare.1996.0164)
Dunkerley, D. Systematic variation of soil infiltration rates within and between the components of the vegetation mosaic in an Australian desert landscape. Hydrol. Process. 16, 119–131 (2002). (PMID: 10.1002/hyp.357)
Ward, D. et al. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 310, 153–162 (2018). (PMID: 10.1016/j.geoderma.2017.09.023)
Hollister, G. B. et al. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J. 4, 829–838 (2010). (PMID: 2013065710.1038/ismej.2010.3)
Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. V. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008). (PMID: 1804758710.1111/j.1461-0248.2007.01139.x)
Berg, G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotech. 84, 11–18 (2009). (PMID: 10.1007/s00253-009-2092-7)
Dohn, J. et al. Tree effects on grass growth in savannas: competition, facilitation and the stress‐gradient hypothesis. J. Ecol. 101, 202–209 (2013). (PMID: 10.1111/1365-2745.12010)
Lai, L. & Kumar, S. A global meta-analysis of livestock grazing impacts on soil properties. PLoS ONE 15, e0236638 (2020). (PMID: 32764754741349010.1371/journal.pone.0236638)
Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990). (PMID: 1780006010.1126/science.247.4946.1043)
Reynolds, J. F., Virginia, R. A., Kemp, P. R., De Soyza, A. G. & Tremmel, D. C. Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecol. Monogr. 69, 69–106 (1999). (PMID: 10.1890/0012-9615(1999)069[0069:IODODS]2.0.CO;2)
Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017). (PMID: 2710350510.1111/brv.12275)
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge Univ. Press, 2006).
Chen, S., Cao, R., Yoshitake, S. & Ohtsuka, T. Stemflow hydrology and DOM flux in relation to tree size and rainfall event characteristics. Agric. For. Meteorol. 279, 107753 (2019). (PMID: 10.1016/j.agrformet.2019.107753)
Fischer, M. et al. Plant species richness and functional traits affect community stability after a flood event. Phil. Trans. R. Soc. B 371, 20150276 (2016). (PMID: 27114578484369710.1098/rstb.2015.0276)
Verheyen, K. et al. Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots? Oecologia 156, 351–361 (2008). (PMID: 1830596110.1007/s00442-008-0998-x)
Hook, P. B., Burke, I. C. & Lauenroth, W. K. Heterogeneity of soil and plant N and C associated with individual plants and openings in North American shortgrass steppe. Plant Soil 138, 247–256 (1991). (PMID: 10.1007/BF00012252)
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff—erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005). (PMID: 10.1890/03-0569)
Eldridge, D. J., Beecham, G. & Grace, J. B. Do shrubs reduce the adverse effects of grazing on soil properties? Ecohydrology 8, 1503–1513 (2015). (PMID: 10.1002/eco.1600)
Travers, S. K. & Berdugo, M. Grazing and productivity alter individual grass size dynamics in semi-arid woodlands. Ecography 43, 1003–1013 (2020). (PMID: 10.1111/ecog.04764)
Piluzza, G., Sulas, L. & Bullitta, S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass Forage Sci. 69, 32–48 (2014). (PMID: 10.1111/gfs.12053)
De Soyza, A. G., Franco, A. C., Virginia, R. A., Reynolds, J. F. & Whitford, W. G. Effects of plant size on photosynthesis and water relations in the desert shrub Prosopis glandulosa (Fabaceae). Am. J. Bot. 83, 99–105 (1996). (PMID: 10.1002/j.1537-2197.1996.tb13880.x)
Dean, W. R. G., Milton, S. J. & Jeltsch, F. Large trees, fertile islands, and birds in arid savanna. J. Arid Environ. 41, 61–78 (1999). (PMID: 10.1006/jare.1998.0455)
Gibb, H. Effects of planting method on the recovery of arboreal ant activity on revegetated farmland. Austral Ecol. 37, 789–799 (2012). (PMID: 10.1111/j.1442-9993.2011.02339.x)
Bolling, J. D. & Walker, L. R. Fertile island development around perennial shrubs across a Mojave Desert chronosequence. West. N. Am. Nat. 62, 88–100 (2002).
Tiedemann, A. R. & Klemmedson, J. O. Long-term effects of mesquite removal on soil characteristics: I: Nutrients and bulk density. Soil Sci. Soc. Am. J. 50, 472–475 (1986). (PMID: 10.2136/sssaj1986.03615995005000020044x)
Belsky, A. J., Mwonga, S. M. & Duxbury, J. M. Effects of widely spaced trees and livestock grazing on understory environments in tropical savannas. Agrofor. Syst. 24, 1–20 (1993). (PMID: 10.1007/BF00705265)
Maestre, F. T. et al. The BIODESERT survey: assessing the impacts of grazing on the structure and functioning of global drylands. Web Ecol. 22, 75–96 (2022). (PMID: 10.5194/we-22-75-2022)
Turner, M. D. Long-term effects of daily grazing orbits on nutrient availability in Sahelian West Africa: I: Gradients in the chemical composition of rangeland soils and vegetation. J. Biogeogr. 25, 669–682 (1998). (PMID: 10.1046/j.1365-2699.1998.2540669.x)
Rasmussen, H. B., Kahindi, O., Vollrath, F. & Douglas‐Hamilton, I. Estimating elephant densities from wells and droppings in dried out riverbeds. Afr. J. Ecol. 43, 312–319 (2005). (PMID: 10.1111/j.1365-2028.2005.00580.x)
Guerra Alonso, C., Zurita, G. & Bellocq, M. Response of dung beetle taxonomic and functional diversity to livestock grazing in an arid ecosystem. Ecol. Entomol. 46, 582–591 (2020). (PMID: 10.1111/een.13004)
Dickinson, C. H., Underhay, V. S. H. & Ross, V. Effect of season, soil fauna and water content on the decomposition of cattle dung pats. New Phytol. 88, 129–141 (1981). (PMID: 10.1111/j.1469-8137.1981.tb04576.x)
Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M. & Soliveres, S. Ecosystem structure, function and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 36, 1273–1283 (2016). (PMID: 10.1890/15-1234)
Travers, S. K., Eldridge, D. J., Koen, T. B., Val, J. & Oliver, I. Livestock and kangaroo grazing have little effect on biomass and fuel hazard in semi-arid woodlands. For. Ecol. Manag. 467, 118165 (2020). (PMID: 10.1016/j.foreco.2020.118165)
Goutte, C., Toft, P., Rostrup, E., Nielsen, F. A. & Hansen, L. K. On clustering fMRI time series. Neuroimage 9, 298–310 (1999). (PMID: 1007590010.1006/nimg.1998.0391)
Lange, R. T. The piosphere: sheep track and dung patterns. J. Range Manag. 22, 396–400 (1969). (PMID: 10.2307/3895849)
Pringle, H. J. R. & Landsberg, J. Predicting the distribution of livestock grazing pressure in rangelands. Austral Ecol. 29, 31–39 (2004). (PMID: 10.1111/j.1442-9993.2004.01363.x)
Tavşanoğlu, Ç. & Pausas, J. A functional trait database for Mediterranean Basin plants. Sci. Data 5, 180135 (2018). (PMID: 29989590603885110.1038/sdata.2018.135)
National Plant Data Team. The PLANTS Database (USDA, 2019).
Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011). (PMID: 10.1111/j.1365-2486.2011.02451.x)
Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001). (PMID: 10.2136/sssaj2001.653849x)
Armas, C., Ordiales, R. & Pugnaire, F. I. Measuring plant interactions: a new comparative index. Ecology 85, 2682–2686 (2004). (PMID: 10.1890/03-0650)
R Core Team. R: a language and environment for statistical computing (R Foundation, 2018).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). (PMID: 10.1002/joc.5086)
Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022). (PMID: 35840601928733110.1038/s41597-022-01493-1)
Zhang, Y.-W., Wang, K.-B., Wang, J., Liu, C. & Shangguan, Z. P. Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau. Sci. Rep. 11, 9692 (2021). (PMID: 33963219810532210.1038/s41598-021-88914-0)
Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017). (PMID: 36568334978864510.18637/jss.v076.i01)
Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (R Foundation, 2020).
McElreath, R. Statistical Rethinking 2nd edn (CRC, 2020).
Archer E. rfPermute: estimate permutation P-values for random forest importance metrics. R package version 1. 5. 2 (R Foundation, 2016).
Eldridge, D., Ding, J., Maestre, F. T. BIODESERT Fertile Island. Figshare https://doi.org/10.6084/m9.figshare.25283074.v1 (2024).
معلومات مُعتمدة: 41991232 National Natural Science Foundation of China (National Science Foundation of China); HSF21040 The Hermon Slade Foundation; DEB 1754106, 20-25166 National Science Foundation (NSF); DRYFUN Project 656035 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions); CIDEGENT/2018/041 Generalitat Valenciana (Regional Government of Valencia)
المشرفين على المادة: 0 (Soil)
تواريخ الأحداث: Date Created: 20240412 Date Completed: 20240524 Latest Revision: 20240731
رمز التحديث: 20240801
DOI: 10.1038/s41477-024-01670-7
PMID: 38609675
قاعدة البيانات: MEDLINE
الوصف
تدمد:2055-0278
DOI:10.1038/s41477-024-01670-7