دورية أكاديمية

Synergism between remdesivir and ribavirin leads to SARS-CoV-2 extinction in cell culture.

التفاصيل البيبلوغرافية
العنوان: Synergism between remdesivir and ribavirin leads to SARS-CoV-2 extinction in cell culture.
المؤلفون: García-Crespo C; Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain., de Ávila AI; Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain., Gallego I; Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain., Soria ME; Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain.; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain., Durán-Pastor A; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain., Somovilla P; Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain.; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain., Martínez-González B; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain., Muñoz-Flores J; GMS Management Solutions S.L., Torre Picasso, Madrid, Spain., Mínguez P; Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.; Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain., Salar-Vidal L; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.; Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain., Esteban-Muñoz M; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain., Cañar-Camacho E; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain., Ferrer-Orta C; Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain., Zuñiga S; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain., Sola I; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain., Enjuanes L; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain., Esteban J; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.; Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain., Fernández-Roblas R; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.; Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain., Gadea I; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.; Centre for Biomedical Network Research on Infectious Diseases (CIBERINFEC), Madrid, Spain., Gómez J; Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada, Spain., Verdaguer N; Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, Spain., Domingo E; Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Campus de Cantoblanco, Madrid, Spain., Perales C; Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.; Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain.
المصدر: British journal of pharmacology [Br J Pharmacol] 2024 Aug; Vol. 181 (15), pp. 2636-2654. Date of Electronic Publication: 2024 Apr 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مواضيع طبية MeSH: Alanine*/analogs & derivatives , Alanine*/pharmacology , Ribavirin*/pharmacology , Antiviral Agents*/pharmacology , Adenosine Monophosphate*/analogs & derivatives , Adenosine Monophosphate*/pharmacology , Drug Synergism* , SARS-CoV-2*/drug effects, Chlorocebus aethiops ; Vero Cells ; Animals ; Humans ; COVID-19 Drug Treatment ; COVID-19/virology
مستخلص: Background and Purpose: There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis.
Experimental Approach: The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured.
Key Results: Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species.
Conclusion and Implications: SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.
(© 2024 British Pharmacological Society.)
References: Airaksinen, A., Pariente, N., Menéndez‐Arias, L., & Domingo, E. (2003). Curing of foot‐and‐mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology, 311, 339–349. https://doi.org/10.1016/S0042-6822(03)00144-2.
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181.
Arora, P., Kempf, A., Nehlmeier, I., Graichen, L., Winkler, M. S., Lier, M., Schulz, S., Jäck, H. M., Cossmann, A., Stankov, M. V., Behrens, G. M. N., Pöhlmann, S., & Hoffmann, M. (2022). SARS‐CoV‐2 variants C.1.2 and B.1.621 (Mu) partially evade neutralization by antibodies elicited upon infection or vaccination. Cell Reports, 39, 110754. https://doi.org/10.1016/j.celrep.2022.110754.
Beaucourt, S., & Vignuzzi, M. (2014). Ribavirin: A drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance. Current Opinion in Virology, 8, 10–15. https://doi.org/10.1016/j.coviro.2014.04.011.
Bekheit, M. S., Panda, S. S., & Girgis, A. S. (2023). Potential RNA‐dependent RNA polymerase (RdRp) inhibitors as prospective drug candidates for SARS‐CoV‐2. European Journal of Medicinal Chemistry, 252, 115292. https://doi.org/10.1016/j.ejmech.2023.115292.
Brady, D. K., Gurijala, A. R., Huang, L., Hussain, A. A., Lingan, A. L., Pembridge, O. G., Ratangee, B. A., Sealy, T. T., Vallone, K. T., & Clements, T. P. (2022). A guide to COVID‐19 antiviral therapeutics: A summary and perspective of the antiviral weapons against SARS‐CoV‐2 infection. The FEBS Journal, 10.1111/febs.16662. https://doi.org/10.1111/febs.16662.
Buchacz, K., Baker, R. K., Moorman, A. C., Richardson, J. T., Wood, K. C., Holmberg, S. D., Brooks, J. T., & HIV Outpatient Study (HOPS) Investigators. (2008). Rates of hospitalizations and associated diagnoses in a large multisite cohort of HIV patients in the United States, 1994‐2005. Aids, 22, 1345–1354. https://doi.org/10.1097/QAD.0b013e328304b38b.
Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58, 621–681. https://doi.org/10.1124/pr.58.3.10.
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou‐Talalay method. Cancer Research, 70, 440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947.
Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y. N., Hong, Z., Andino, R., & Cameron, C. E. (2000). The broad‐spectrum antiviral ribonucleotide, ribavirin, is an RNA virus mutagen. Nature Medicine, 6, 1375–1379. https://doi.org/10.1038/82191.
de Ávila, A. I., Gallego, I., Soria, M. E., Gregori, J., Quer, J., Esteban, J. I., Rice, C. M., Domingo, E., & Perales, C. (2016). Lethal mutagenesis of hepatitis C virus induced by favipiravir. PLoS ONE, 11, e0164691. https://doi.org/10.1371/journal.pone.0164691.
Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D., & Baric, R. S. (2011). Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity. RNA Biology, 8, 270–279. https://doi.org/10.4161/rna.8.2.15013.
Domingo, E., García‐Crespo, C., & Perales, C. (2021). Historical perspective on the discovery of the quasispecies concept. Annual Review of Virology, 8, 51–72. https://doi.org/10.1146/annurev-virology-091919-105900.
Domingo, E., Martínez‐González, B., García‐Crespo, C., Somovilla, P., de Ávila, A. I., Soria, M. E., Durán‐Pastor, A., & Perales, C. (2023). Puzzles, challenges, and information reservoir of SARS‐CoV‐2 quasispecies. Journal of Virology, 97, e0151123. https://doi.org/10.1128/jvi.01511-23.
Domingo, E., & Perales, C. (2019). Viral quasispecies. PLoS Genetics, 15, e1008271. https://doi.org/10.1371/journal.pgen.1008271.
Eggington, J. M., Greene, T., & Bass, B. L. (2011). Predicting sites of ADAR editing in double‐stranded RNA. Nature Communications, 2, 319. https://doi.org/10.1038/ncomms1324.
Gallego, I., Gregori, J., Soria, M. E., García‐Crespo, C., García‐Álvarez, M., Gómez‐González, A., Valiergue, R., Gómez, J., Esteban, J. I., Quer, J., Domingo, E., & Perales, C. (2018). Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology, 523, 100–109. https://doi.org/10.1016/j.virol.2018.07.030.
Gallego, I., Sheldon, J., Moreno, E., Gregori, J., Quer, J., Esteban, J. I., Rice, C. M., Domingo, E., & Perales, C. (2016). Barrier‐independent, fitness‐associated differences in sofosbuvir efficacy against hepatitis C virus. Antimicrobial Agents and Chemotherapy, 60, 3786–3793. https://doi.org/10.1128/AAC.00581-16.
Gallego, I., Soria, M. E., Gregori, J., de Avila, A. I., Garcia‐Crespo, C., Moreno, E., Gadea, I., Esteban, J., Fernández‐Roblas, R., Esteban, J. I., Gómez, J., Quer, J., Domingo, E., & Perales, C. (2019). Synergistic lethal mutagenesis of hepatitis C virus. Antimicrobial Agents and Chemotherapy, 63, e01653‐19. https://doi.org/10.1128/AAC.01653-19.
Geraghty, R. J., Aliota, M. T., & Bonnac, L. F. (2021). Broad‐spectrum antiviral strategies and nucleoside analogues. Viruses, 13, 667. https://doi.org/10.3390/v13040667.
Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., Feng, J. Y., Porter, D. P., & Götte, M. (2020). Remdesivir is a direct‐acting antiviral that inhibits RNA‐dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. The Journal of Biological Chemistry, 295, 6785–6797. https://doi.org/10.1074/jbc.RA120.013679.
Grande‐Pérez, A., Lázaro, E., Lowenstein, P., Domingo, E., & Manrubia, S. C. (2005). Suppression of viral infectivity through lethal defection. Proceedings of the National Academy of Sciences of the United States of America, 102, 4448–4452. https://doi.org/10.1073/pnas.0408871102.
Greaney, A. J., Starr, T. N., Gilchuk, P., Zost, S. J., Binshtein, E., Loes, A. N., Hilton, S. K., Huddleston, J., Eguia, R., Crawford, K. H. D., Dingens, A. S., Nargi, R. S., Sutton, R. E., Suryadevara, N., Rothlauf, P. W., Liu, Z., Whelan, S. P. J., Carnahan, R. H., Crowe, J. E. Jr., & Bloom, J. D. (2021). Complete mapping of mutations to the SARS‐CoV‐2 spike receptor‐binding domain that escape antibody recognition. Cell Host & Microbe, 29, 44–57. https://doi.org/10.1016/j.chom.2020.11.007.
Gregori, J., Perales, C., Rodriguez‐Frias, F., Esteban, J. I., Quer, J., & Domingo, E. (2016). Viral quasispecies complexity measures. Virology, 493, 227–237. https://doi.org/10.1016/j.virol.2016.03.017.
Gribble, J., Stevens, L. J., Agostini, M. L., Anderson‐Daniels, J., Chappell, J. D., Lu, X., Pruijssers, A. J., Routh, A. L., & Denison, M. R. (2021). The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLoS Pathogens, 17, e1009226. https://doi.org/10.1371/journal.ppat.1009226.
Hadj Hassine, I., Ben M'hadheb, M., & Menendez‐Arias, L. (2022). Lethal mutagenesis of RNA viruses and approved drugs with antiviral mutagenic activity. Viruses, 14, 841. https://doi.org/10.3390/v14040841.
Harcourt, J., Tamin, A., Lu, X., Kamili, S., Sakthivel, S. K., Murray, J., Queen, K., Tao, Y., Paden, C. R., Zhang, J., Li, Y., Uehara, A., Wang, H., Goldsmith, C., Bullock, H. A., Wang, L., Whitaker, B., Lynch, B., Gautam, R., … Thornburg, N. J. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. Emerging Infectious Diseases, 26(6), 1266–1273. https://doi.org/10.3201/eid2606.200516.
Hathaway, N. J., Parobek, C. M., Juliano, J. J., & Bailey, J. A. (2018). SeekDeep: Single‐base resolution de novo clustering for amplicon deep sequencing. Nucleic Acids Research, 46, e21. https://doi.org/10.1093/nar/gkx1201.
Ianevski, A., Giri, A. K., & Aittokallio, T. (2022). SynergyFinder 3.0: An interactive analysis and consensus interpretation of multi‐drug synergies across multiple samples. Nucleic Acids Research, 50, W739–W743. https://doi.org/10.1093/nar/gkac382.
Jena, N. R. (2020). Role of different tautomers in the base‐pairing abilities of some of the vital antiviral drugs used against COVID‐19. Physical Chemistry Chemical Physics, 22, 28115–28122. https://doi.org/10.1039/D0CP05297C.
Kokic, G., Hillen, H. S., Tegunov, D., Dienemann, C., Seitz, F., Schmitzova, J., Farnung, L., Siewert, A., Höbartner, C., & Cramer, P. (2021). Mechanism of SARS‐CoV‐2 polymerase stalling by remdesivir. Nature Communications, 12, 279. https://doi.org/10.1038/s41467-020-20542-0.
Lin, S., Chen, H., Chen, Z., Yang, F., Ye, F., Zheng, Y., Yang, J., Lin, X., Sun, H., Wang, L., Wen, A., Dong, H., Xiao, Q., Deng, D., Cao, Y., & Lu, G. (2021). Crystal structure of SARS‐CoV‐2 nsp10 bound to nsp14‐ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Research, 49, 5382–5392. https://doi.org/10.1093/nar/gkab320.
Martínez‐González, B., Gallego, I., Gregori, J., Soria, M. E., Somovilla, P., de Ávila, A. I., García‐Crespo, C., Durán‐Pastor, A., Briones, C., Gómez, J., Quer, J., Domingo, E., & Perales, C. (2023). Fitness‐dependent, mild mutagenic activity of Sofosbuvir for hepatitis C virus. Antimicrobial Agents and Chemotherapy, 67, e0039423. https://doi.org/10.1128/aac.00394-23.
Martínez‐González, B., Soria, M. E., Vázquez‐Sirvent, L., Ferrer‐Orta, C., Lobo‐Vega, R., Mínguez, P., de la Fuente, L., Llorens, C., Soriano, B., Ramos, R., Cortón, M., López‐Rodríguez, R., García‐Crespo, C., Gallego, I., de Ávila, A. I., Gómez, J., Enjuanes, L., Salar‐Vidal, L., Esteban, J., … Perales, C. (2022). SARS‐CoV‐2 point mutation and deletion spectra and their association with different disease outcomes. Microbiology Spectrum, 10, e0022122. https://doi.org/10.1128/spectrum.00221-22.
Martínez‐González, B., Soria, M. E., Vázquez‐Sirvent, L., Ferrer‐Orta, C., Lobo‐Vega, R., Mínguez, P., de la Fuente, L., Llorens, C., Soriano, B., Ramos‐Ruíz, R., Cortón, M., López‐Rodríguez, R., García‐Crespo, C., Somovilla, P., Durán‐Pastor, A., Gallego, I., de Ávila, A. I., Delgado, S., Morán, F., … Perales, C. (2022). SARS‐CoV‐2 mutant spectra at different depth levels reveal an overwhelming abundance of low frequency mutations. Pathogens, 11, 662. https://doi.org/10.3390/pathogens11060662.
Martínez‐González, B., Vázquez‐Sirvent, L., Soria, M. E., Mínguez, P., Salar‐Vidal, L., García‐Crespo, C., Gallego, I., de Ávila, A. I., Llorens, C., Soriano, B., Ramos‐Ruiz, R., Esteban, J., Fernandez‐Roblas, R., Gadea, I., Ayuso, C., Ruíz‐Hornillos, J., Pérez‐Jorge, C., Domingo, E., & Perales, C. (2022). Vaccine‐breakthrough infections with SARS‐CoV‐2 alpha mirror mutations in Delta Plus, Iota and Omicron. The Journal of Clinical Investigation, 132, e157700. https://doi.org/10.1172/JCI157700.
Metwally, K., Abo‐Dya, N. E., Alahmdi, M. I., Albalawi, M. Z., Yahya, G., Aljoundi, A., Salifu, E. Y., Elamin, G., Ibrahim, M. A. A., Sayed, Y., Fanucchi, S., & Soliman, M. E. S. (2023). The unusual architecture of RNA‐dependent RNA polymerase (RdRp)'s catalytic chamber provides a potential strategy for combination therapy against COVID‐19. Molecules, 28, 2806. https://doi.org/10.3390/molecules28062806.
Mourier, T., Sadykov, M., Carr, M. J., Gonzalez, G., Hall, W. W., & Pain, A. (2021). Host‐directed editing of the SARS‐CoV‐2 genome. Biochemical and Biophysical Research Communications, 538, 35–39. https://doi.org/10.1016/j.bbrc.2020.10.092.
Ogando, N. S., Zevenhoven‐Dobbe, J. C., van der Meer, Y., Bredenbeek, P. J., Posthuma, C. C., & Snijder, E. J. (2020). The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS‐CoV and SARS‐CoV‐2. Journal of Virology, 94, e01246‐20. https://doi.org/10.1128/JVI.01246-20.
Perales, C., Chen, Q., Soria, M. E., Gregori, J., Garcia‐Cehic, D., Nieto‐Aponte, L., Castells, L., Imaz, A., Llorens‐Revull, M., Domingo, E., Buti, M., Esteban, J. I., Rodriguez‐Frias, F., & Quer, J. (2018). Baseline hepatitis C virus resistance‐associated substitutions present at frequencies lower than 15% may be clinically significant. Infection and Drug Resistance, 11, 2207–2210. https://doi.org/10.2147/IDR.S172226.
Perales, C., Gallego, I., de Ávila, A. I., Soria, M. E., Gregori, J., Quer, J., & Domingo, E. (2019). The increasing impact of lethal mutagenesis of viruses. Future Medicinal Chemistry, 11, 1645–1657. https://doi.org/10.4155/fmc-2018-0457.
Perales, C., Ortega‐Prieto, A. M., Beach, N. M., Sheldon, J., Menéndez‐Arias, L., & Domingo, E. (2020). Quasispecies and drug resistance. In Handbook of antimicrobial resistance. Springer Science+Business Media.
Pickard, A., Calverley, B. C., Chang, J., Garva, R., Gago, S., Lu, Y., & Kadler, K. E. (2021). Discovery of re‐purposed drugs that slow SARS‐CoV‐2 replication in human cells. PLoS Pathogens, 17, e1009840. https://doi.org/10.1371/journal.ppat.1009840.
Ratan, Y., Rajput, A., Jain, V., Mishra, D. K., Gautam, R. K., & Pareek, A. (2023). Promising repurposed antiviral molecules to combat SARS‐CoV‐2: A review. Current Pharmaceutical Biotechnology, 24, 1727–1739. https://doi.org/10.2174/1389201024666230302113110.
Ratcliff, J., & Simmonds, P. (2021). Potential APOBEC‐mediated RNA editing of the genomes of SARS‐CoV‐2 and other coronaviruses and its impact on their longer term evolution. Virology, 556, 62–72. https://doi.org/10.1016/j.virol.2020.12.018.
Ribeiro, R. M., & Bonhoeffer, S. (2000). Production of resistant HIV mutants during antiretroviral therapy. Proceedings of the National Academy of Sciences of the United States of America, 97, 7681–7686. https://doi.org/10.1073/pnas.97.14.7681.
Sacramento, C. Q., de Melo, G. R., de Freitas, C. S., Rocha, N., Hoelz, L. V., Miranda, M., Fintelman‐Rodrigues, N., Marttorelli, A., Ferreira, A. C., Barbosa‐Lima, G., Abrantes, J. L., Vieira, Y. R., Bastos, M. M., de Mello Volotão, E., Nunes, E. P., Tschoeke, D. A., Leomil, L., Loiola, E. C., Trindade, P., … Souza, T. M. L. (2017). The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Scientific Reports, 7, 40920. https://doi.org/10.1038/srep40920.
Schloer, S., Brunotte, L., Mecate‐Zambrano, A., Zheng, S., Tang, J., Ludwig, S., & Rescher, U. (2021). Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS‐CoV‐2 infection in vitro. British Journal of Pharmacology, 178, 2339–2350. https://doi.org/10.1111/bph.15418.
Sender, R., Bar‐On, Y. M., Gleizer, S., Bernshtein, B., Flamholz, A., Phillips, R., & Milo, R. (2021). The total number and mass of SARS‐CoV‐2 virions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2024815118. https://doi.org/10.1073/pnas.2024815118.
Shannon, A., & Canard, B. (2023). Kill or corrupt: Mechanisms of action and drug‐resistance of nucleotide analogues against SARS‐CoV‐2. Antiviral Research, 210, 105501. https://doi.org/10.1016/j.antiviral.2022.105501.
Sheldon, J., Beach, N. M., Moreno, E., Gallego, I., Piñeiro, D., Martínez‐Salas, E., Gregori, J., Quer, J., Esteban, J. I., Rice, C. M., Domingo, E., & Perales, C. (2014). Increased replicative fitness can lead to decreased drug sensitivity of hepatitis C virus. Journal of Virology, 88, 12098–12111. https://doi.org/10.1128/JVI.01860-14.
Somovilla, P., García‐Crespo, C., Martínez‐González, B., Soria, M. E., de Ávila, A. I., Gallego, I., Mínguez, P., Durán‐Pastor, A., Ferrer‐Orta, C., Salar‐Vidal, L., Esteban‐Muñoz, M., Zuñiga, S., Sola, I., Enjuanes, L., Esteban, J., Fernandez‐Roblas, R., Gadea, I., Gómez, J., Verdaguer, N., … Perales, C. (2023). Atypical mutational spectrum of SARS‐CoV‐2 replicating in the presence of ribavirin. Antimicrobial Agents and Chemotherapy, 67, e0131522. https://doi.org/10.1128/aac.01315-22.
Soria, M. E., Gregori, J., Chen, Q., García‐Cehic, D., Llorens, M., de Ávila, A. I., Beach, N. M., Domingo, E., Rodríguez‐Frías, F., Buti, M., Esteban, R., Esteban, J. I., Quer, J., & Perales, C. (2018). Pipeline for specific subtype amplification and drug resistance detection in hepatitis C virus. BMC Infectious Diseases, 18, 446. https://doi.org/10.1186/s12879-018-3356-6.
Takashita, E., Kinoshita, N., Yamayoshi, S., Sakai‐Tagawa, Y., Fujisaki, S., Ito, M., Iwatsuki‐Horimoto, K., Chiba, S., Halfmann, P., Nagai, H., Saito, M., Adachi, E., Sullivan, D., Pekosz, A., Watanabe, S., Maeda, K., Imai, M., Yotsuyanagi, H., Mitsuya, H., … Kawaoka, Y. (2022). Efficacy of antibodies and antiviral drugs against Covid‐19 omicron variant. The New England Journal of Medicine, 386, 995–998. https://doi.org/10.1056/NEJMc2119407.
Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Gotte, M. (2019). Mechanism of inhibition of Ebola virus RNA‐dependent RNA polymerase by remdesivir. Viruses, 11, 326. https://doi.org/10.3390/v11040326.
Trabace, L., Pace, L., Morgese, M. G., Santo, I. B., Galante, D., Schiavone, S., Cipolletta, D., Rosa, A. M., Reveglia, P., Parisi, A., Tucci, P., Pepe, G., Sacco, R., Foschino Barbaro, M. P., Corso, G., & Fasanella, A. (2022). SARS‐CoV‐2 Gamma and Delta variants of concern might undermine neutralizing activity generated in response to BNT162b2 mRNA vaccination. Viruses, 14, 814. https://doi.org/10.3390/v14040814.
Vandamme, A. M., Witvrouw, M., Pannecouque, C., Balzarini, J., van Laethem, K., Schmit, J. C., Desmyter, J., & de Clercq, E. (2000). Evaluating clinical isolates for their phenotypic and genotypic resistance against anti‐HIV drugs. Methods in Molecular Medicine, 24, 223–258. https://doi.org/10.1385/1-59259-245-7:223.
Wang, J., Reiss, K., Shi, Y., Lolis, E., Lisi, G. P., & Batista, V. S. (2021). Mechanism of inhibition of the reproduction of SARS‐CoV‐2 and Ebola viruses by remdesivir. Biochemistry, 60, 1869–1875. https://doi.org/10.1021/acs.biochem.1c00292.
WHO. (2023). World Health Statistics: Monitoring Health for the Sustainable Development goals (SDGs). 978‐92‐4‐007432‐3.
Yan, D., & Yan, B. (2023). Viral target and metabolism‐based rationale for combined use of recently authorized small molecule COVID‐19 medicines: Molnupiravir, nirmatrelvir, and remdesivir. Fundamental & Clinical Pharmacology, 37, 726–738. https://doi.org/10.1111/fcp.12889.
Zhang, N., Fu, J. N., & Chou, T. C. (2016). Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX‐1 cells in vitro: Experimental design and data analysis using the combination index method. American Journal of Cancer Research, 6, 97–104.
Zhao, L., & Illingworth, C. J. R. (2019). Measurements of intrahost viral diversity require an unbiased diversity metric. Virus Evolution, 5, vey041.
معلومات مُعتمدة: 13-2022-008566 Consejería de Educación e Investigación; S2018/BAA-4370 Consejería de Educación e Investigación; 202220I116 Ministerio de Ciencia e Innovación; PID2020-113888RB-I00 Ministerio de Ciencia e Innovación; PID2020-117976GB-I00 Ministerio de Ciencia e Innovación; CSIC-COV19-014 Consejo Superior de Investigaciones Científicas; CA1/RSUE/2021 Ministerio de Ciencia, Innovación y Universidades; PRE2018-083422 Ministerio de Ciencia, Innovación y Universidades; CPII21/00015 Instituto de Salud Carlos III; PFIS FI19/00119 Instituto de Salud Carlos III; PI21/00139 Instituto de Salud Carlos III; 202136-30 Fundació La Marató de TV3; 202136-31 Fundació La Marató de TV3
فهرسة مساهمة: Keywords: COVID‐19 therapy; Quasi‐species; error catastrophe; lethal mutagenesis; virus diversity
المشرفين على المادة: OF5P57N2ZX (Alanine)
3QKI37EEHE (remdesivir)
49717AWG6K (Ribavirin)
0 (Antiviral Agents)
415SHH325A (Adenosine Monophosphate)
تواريخ الأحداث: Date Created: 20240414 Date Completed: 20240702 Latest Revision: 20240702
رمز التحديث: 20240702
DOI: 10.1111/bph.16344
PMID: 38616133
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5381
DOI:10.1111/bph.16344