دورية أكاديمية

RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells.

التفاصيل البيبلوغرافية
العنوان: RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells.
المؤلفون: Hemagirri M; Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia., Chen Y; Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia., Gopinath SCB; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia.; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia.; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh., Adnan M; Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia., Patel M; Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India., Sasidharan S; Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia. srisasidharan@yahoo.com.
المصدر: Biogerontology [Biogerontology] 2024 Aug; Vol. 25 (4), pp. 705-737. Date of Electronic Publication: 2024 Apr 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Country of Publication: Netherlands NLM ID: 100930043 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6768 (Electronic) Linking ISSN: 13895729 NLM ISO Abbreviation: Biogerontology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht ; Boston : Kluwer Academic, c2000-
مواضيع طبية MeSH: Plant Extracts*/pharmacology , Plant Leaves*/chemistry , Polyalthia*/chemistry , Saccharomyces cerevisiae*/genetics , Saccharomyces cerevisiae*/drug effects , Sirtuin 2*/genetics , Sirtuin 2*/metabolism, Aging/drug effects ; Aging/genetics ; Gene Expression Regulation, Fungal/drug effects ; Methanol/chemistry ; Saccharomyces cerevisiae Proteins/genetics ; Saccharomyces cerevisiae Proteins/metabolism ; Sequence Analysis, RNA/methods ; Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics ; Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism ; Superoxide Dismutase/metabolism ; Superoxide Dismutase/genetics ; Superoxide Dismutase-1/genetics ; Superoxide Dismutase-1/metabolism
مستخلص: Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Akbari M, Kirkwood TBL, Bohr VA (2019) Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev 54:100940. https://doi.org/10.1016/j.arr.2019.100940. (PMID: 10.1016/j.arr.2019.1009407479635)
Allen RG (1998) Oxidative stress and superoxide dismutase in development, aging and gene regulation. Age 21(2):47–76. https://doi.org/10.1007/s11357-998-0007-7. (PMID: 10.1007/s11357-998-0007-73455717)
Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL (2013) Natural compounds with anti-ageing activity. Nat Prod Rep 30(11):1412–1437. https://doi.org/10.1039/C3NP70031C. (PMID: 10.1039/C3NP70031C)
Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Go A, Delaney A, Griffith M, Hickenbotham M, Magrini V, Mardis ER, Sadar MD, Siddiqui AS, Marra MA, Jones SJM (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7:246. https://doi.org/10.1186/1471-2164-7-246. (PMID: 10.1186/1471-2164-7-2461592491)
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. (PMID: 10.1111/j.2517-6161.1995.tb02031.x)
Bonini JA, Hofmann C (1991) A rapid, accurate, nonradioactive method for quantitating RNA on agarose gels. Biotechniques 11(6):708–771.
Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39. https://doi.org/10.1677/jme.0.0290023. (PMID: 10.1677/jme.0.0290023)
Catic A (2018) Cellular metabolism and aging. Prog Mol Biol Transl Sci 155:85–107. https://doi.org/10.1016/bs.pmbts.2017.12.003. (PMID: 10.1016/bs.pmbts.2017.12.0035967871)
Chen Y, Lun ATL, Smyth GK (2016) From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5:1438. https://doi.org/10.12688/f1000research.8987.2. (PMID: 10.12688/f1000research.8987.24934518)
Chodari L, Aytemir MD, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A (2021) Targeting mitochondrial biogenesis with polyphenol compounds. Oxid Med Cell Longev. https://doi.org/10.1155/2021/4946711. (PMID: 10.1155/2021/49467118289611)
Covarrubias AJ, Perrone R, Grozio A, Verdin E (2021) NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 22(2):119–141. https://doi.org/10.1038/s41580-020-00313-x. (PMID: 10.1038/s41580-020-00313-x)
Crozier A, Lean MEJ, McDonald MS, Black C (1997) Quantitative analysis of the flavonoid content of commercial tomatoes, onions, Lettuce, and celery. J Agric Food Chem 45(3):590–595. https://doi.org/10.1021/jf960339y. (PMID: 10.1021/jf960339y)
Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012:646354. https://doi.org/10.1155/2012/646354. (PMID: 10.1155/2012/646354)
Culotta VC (2001) Superoxide dismutase, oxidative stress, and cell metabolism. Curr Top Cell Regul 36(C):117–132. https://doi.org/10.1016/s0070-2137(01)80005-4. (PMID: 10.1016/s0070-2137(01)80005-4)
Donlawson C, Okah R (2023) Phytochemical analysis of Polyalthi longifolia (fresh leaves). Direct Res J Chem Mater Sci 11(7):49–52.
Du S, Zheng H (2021) Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci 11(1):188. https://doi.org/10.1186/s13578-021-00700-7. (PMID: 10.1186/s13578-021-00700-78561869)
Dudoit S, Van Der Laan MJ, Pollard KS (2004) Multiple testing. Part I. single-step procedures for control of general type I error rates. Stat Appl Genet Mol Biol 3:Article13. https://doi.org/10.2202/1544-6115.1040. (PMID: 10.2202/1544-6115.1040)
Elchuri S, Oberley TD, Qi W, Eisenstein RS, Roberts LJ, Van Remmen H, Epstein CJ, Huang TT (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24(3):367–380. https://doi.org/10.1038/sj.onc.1208207. (PMID: 10.1038/sj.onc.1208207)
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, Monteiro Neto JR, de Holanda Paranhos L (2021) SOD1, more than just an antioxidant. Arch Biochem Biophys 697:108701. https://doi.org/10.1016/j.abb.2020.108701. (PMID: 10.1016/j.abb.2020.108701)
Filomeni G, De Zio D, Cecconi F (2014) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22(3):377–388. https://doi.org/10.1038/cdd.2014.150. (PMID: 10.1038/cdd.2014.1504326572)
Fukai T, Ushio-Fukai M, Superoxide, Dismutases (2011) Role in Redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999. (PMID: 10.1089/ars.2011.39993151424)
Glasel J (1995) Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques 18(1):62–63.
Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18(4):447–476. https://doi.org/10.1007/s10522-017-9685-9. (PMID: 10.1007/s10522-017-9685-95514220)
Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14(9):1021–1026. (PMID: 10.1101/gad.14.9.1021)
Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast saccharomyces cerevisiae. Microbiol Mol Biol 62(4):1264–1300. https://doi.org/10.1128/MMBR.62.4.1264-1300.1998. (PMID: 10.1128/MMBR.62.4.1264-1300.1998)
Hano C, Tungmunnithum D (2020) Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases. Medicines 7(5):26. https://doi.org/10.3390/medicines7050026. (PMID: 10.3390/medicines70500267281114)
Hansen JM, Go YM, Jones DP (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215–234. https://doi.org/10.1146/annurev.pharmtox.46.120604.141122. (PMID: 10.1146/annurev.pharmtox.46.120604.141122)
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300. https://doi.org/10.1093/geronj/11.3.298. (PMID: 10.1093/geronj/11.3.298)
Hemagirri M, Sasidharan S (2022a) In vitro antiaging activity of polyphenol rich Polyalthia longifolia (Annonaceae) leaf extract in saccharomyces cerevisiae BY611 yeast cells. J Ethnopharmacol 290:115110. https://doi.org/10.1016/J.JEP.2022.115110. (PMID: 10.1016/J.JEP.2022.115110)
Hemagirri M, Sasidharan S (2022b) Evaluation of in situ antiaging activity in Saccharomyces cerevisiae BY611 yeast cells treated with Polyalthia Longifolia leaf methanolic extract (PLME) using different microscopic approaches: a morphology-based evaluation. Microsc Microanal 28(3):767–779. https://doi.org/10.1017/S1431927622000393. (PMID: 10.1017/S1431927622000393)
Huang X, Li Y, Pan J, Li M, Lai Y, Gao J, Li X (2016) RNA-Seq identifies redox balance related gene expression alterations under acute cadmium exposure in yeast. Environ Microbiol Rep 8(6):1038–1047. https://doi.org/10.1111/1758-2229.12484. (PMID: 10.1111/1758-2229.12484)
Imai S, Guarente L (2014) NAD + and sirtuins in aging and disease. Trends Cell Biol 24(8):464–471. https://doi.org/10.1016/j.tcb.2014.04.002. (PMID: 10.1016/j.tcb.2014.04.0024112140)
Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E, Mueller O, Schroeder A, Auffray C (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33(6):e56. https://doi.org/10.1093/nar/gni054. (PMID: 10.1093/nar/gni0541072807)
Inoue T, Hiratsuka M, Osaki M, Oshimura M (2007) The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle (Georgetown Tex) 6(9):1011–1018. https://doi.org/10.4161/cc.6.9.4219. (PMID: 10.4161/cc.6.9.4219)
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580. https://doi.org/10.1101/gad.13.19.2570. (PMID: 10.1101/gad.13.19.2570317077)
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27. (PMID: 10.1093/nar/28.1.27102409)
Kang WK, Kim YH, Kim BS, Kim JY (2014) Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. J Microbiol (KJM) 52(8):652–658. https://doi.org/10.1007/s12275-014-4173-2. (PMID: 10.1007/s12275-014-4173-2)
Kavilasha V, Sasidharan S (2021) Antiaging activity of polyphenol rich Calophyllum inophyllum L. fruit extract in Saccharomyces cerevisiae BY611 yeast cells. Food Biosci 42:101208. https://doi.org/10.1016/j.fbio.2021.101208. (PMID: 10.1016/j.fbio.2021.101208)
Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M (2023) Impact of polyphenols on inflammatory and oxidative stress factors in diabetes mellitus: nutritional antioxidants and their application in improving antidiabetic therapy. Biomolecules 13:1402. https://doi.org/10.3390/biom13091402. (PMID: 10.3390/biom1309140210526737)
Le Pecq JB, Paoletti C (1966) A new fluorometric method for RNA and DNA determination. Anal Biochem 17(1):100–107. https://doi.org/10.1016/0003-2697(66)90012-1. (PMID: 10.1016/0003-2697(66)90012-1)
Lefevre SD, van Roermund CW, Wanders RJA, Veenhuis M, Van der Klei IJ (2013) The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell 12(5):784–793. https://doi.org/10.1111/acel.12113. (PMID: 10.1111/acel.12113)
Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochem J 16(21):4743–4751. https://doi.org/10.1021/bi00640a033. (PMID: 10.1021/bi00640a033)
Li W (2012) Volcano plots in analyzing differential expressions with mRNA microarrays. J Bioinform Comput Biol 10(6):1231003. https://doi.org/10.1142/S0219720012310038. (PMID: 10.1142/S0219720012310038)
Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858. https://doi.org/10.1101/gr.078212.108. (PMID: 10.1101/gr.078212.1082577856)
Li T, Wright DA, Spalding MH, Yang B (2014) TALEN-Based genome editing in yeast. Fungal Biol Genet Transform Syst Fungi 1:289–307. https://doi.org/10.1007/978-3-319-10142-2&#95;27. (PMID: 10.1007/978-3-319-10142-2_27)
Lightfoot S (2002) Quantitation comparison of total RNA using the Agilent 2100 bioanalyzer, ribo-green analysis and UV spectrometry. Agilent Application Note.
Lin SJ, Defossez PA, Guarente L (2002) Requirement of NAD and SIR2 for life-span extension by calorie restriction in saccharomyces cerevisiae. Science (N Y) 289(5487):2126–2128. https://doi.org/10.1126/science.289.5487.2126. (PMID: 10.1126/science.289.5487.2126)
Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120(4):497–512. https://doi.org/10.1016/j.cell.2005.01.028. (PMID: 10.1016/j.cell.2005.01.028)
Longo V, Shadel G, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16(1):18–31. https://doi.org/10.1016/j.cmet.2012.06.002. (PMID: 10.1016/j.cmet.2012.06.0023392685)
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039. (PMID: 10.1016/j.cell.2013.05.0393836174)
López-Otín C, Galluzzi L, Freije JMP, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166(4):802–821. https://doi.org/10.1016/j.cell.2016.07.031. (PMID: 10.1016/j.cell.2016.07.031)
Love MI, HuberW, Anders S (2014) Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-84302049)
Manchester K (1995) Value of A260/ A280 ratios for measurement of purity of nucleic acids. Biotechniques 19(2):208–210.
Manchester KL (1996) Use of UV methods for measurement of protein and nucleic acid concentrations. Biotechniques 20(6):968–970. https://doi.org/10.2144/96206bm05. (PMID: 10.2144/96206bm05)
Maslanka R, Zadrag-Tecza R (2020) Reproductive potential of yeast cells depends on overall action of interconnected changes in central carbon metabolism, cellular biosynthetic capacity, and proteostasis. Int J Mol Sci 21(19):7313. https://doi.org/10.3390/ijms21197313. (PMID: 10.3390/ijms211973137582853)
Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging 5(3):144–150. https://doi.org/10.18632/aging.100544. (PMID: 10.18632/aging.1005443629286)
Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46. https://doi.org/10.1038/nrg2626. (PMID: 10.1038/nrg2626)
Miao L, St. Clair DK (2009) Regulation of Superoxide dismutase genes: implications in diseases. Free Radic Biol Med 47(4):344–356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018. (PMID: 10.1016/j.freeradbiomed.2009.05.0182731574)
Mueller O, Hahnenberger K, Dittmann M, Yee H, Dubrow R, Nagle R, Ilsley D (2000) A microfluidic system for high-speed reproducible DNA sizing and quantitation. Electrophoresis 21(1):128–134. (PMID: 10.1002/(SICI)1522-2683(20000101)21:1<128::AID-ELPS128>3.0.CO;2-M)
Mundhe KS, Kale AA, Gaikwad SA, Deshpande NR, Kashalkar RV (2011) Evaluation of phenol, flavonoid contents and antioxidant activity of Polyalthia Longifolia. J Chem Pharm Res 3(1):764–769.
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science (N Y) 320(5881):1344–1349. https://doi.org/10.1126/science.1158441. (PMID: 10.1126/science.1158441)
North BJ, Verdin E, Sirtuins (2004) Sir2-related NAD-dependent protein deacetylases. Genome Biol 5(5):224. https://doi.org/10.1186/gb-2004-5-5-224. (PMID: 10.1186/gb-2004-5-5-224416462)
Ozsolak F, Milos PM (2010) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98. https://doi.org/10.1038/nrg2934. (PMID: 10.1038/nrg29343031867)
Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619. (PMID: 10.1371/journal.pone.00306193270013)
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11(9):1650–1667. https://doi.org/10.1038/nprot.2016.095. (PMID: 10.1038/nprot.2016.0955032908)
Pristavu M-C, Diguţă CF, Moraru I, Matei F (2021) Use of saccharomyces cerevisiae as an anti-aging study tool. Sci Bull Ser F Biotechnol 25(1):126–138.
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova M, Shaposhnikov E, Moskalev A (2020) Terpenoids as potential geroprotectors. Antioxidant 9:529. https://doi.org/10.3390/antiox9060529. (PMID: 10.3390/antiox9060529)
Rattan SIS (2024) Seven knowledge gaps in modern biogerontology. Biogerontology 25:1–8. https://doi.org/10.1007/s10522-023-10089-0. (PMID: 10.1007/s10522-023-10089-0)
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616. (PMID: 10.1093/bioinformatics/btp616)
Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F (2021) Superoxide dismutase administration: a review of proposed human uses. Molecules 26(7):1844. https://doi.org/10.3390/molecules26071844. (PMID: 10.3390/molecules260718448037464)
Roux AE, Chartrand P, Ferbeyre G, Rokeach LA (2010) Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes. J Gerontol Biol Sci Med Sci 65(1):1–8. https://doi.org/10.1093/gerona/glp152. (PMID: 10.1093/gerona/glp152)
Salehi B, Azzini E, Zucca P, Varoni EM, Kumar NVA, Dini L, Panzarini E, Rajkovic J, Fokou PVT, Peluso I, Mishra AP, Nigam M, Rayess Y, Beyrouthy M, Setzer WN, Polito L, Iriti M, Sureda A, Quetglas-Llabrés MM, Sharifi-Rad J (2020) Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl Sci 10(3):947. https://doi.org/10.3390/app10030947. (PMID: 10.3390/app10030947)
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harb, New York.
Sangeetha T, Chen Y, Sasidharan S (2020) Oxidative stress and aging and medicinal plants as antiaging agents. J Complement Med Res 11(3):01–05. https://doi.org/10.5455/jcmr.2020.11.03.01. (PMID: 10.5455/jcmr.2020.11.03.01)
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037. (PMID: 10.1155/2012/217037)
Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M (2023) Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. 3 Biotech 13(1):29. https://doi.org/10.1007/s13205-022-03455-1. (PMID: 10.1007/s13205-022-03455-1)
Singh KP, Miaskowski C, Dhruva AA, Flowers E, Kober KM (2018) Mechanisms and measurement of changes in gene expression. Biol Res Nurs 20(4):369–382. https://doi.org/10.1177/1099800418772161. (PMID: 10.1177/10998004187721616346310)
Song L, Zhang S (2023) Anti-aging activity and modes of action of compounds from natural food sources. Biomolecules 13:1600. https://doi.org/10.3390/biom13111600. (PMID: 10.3390/biom1311160010669485)
Stead ER, Bjedov I (2021) Balancing DNA repair to prevent ageing and cancer. Exp Cell Res 405(2):112679. https://doi.org/10.1016/j.yexcr.2021.112679. (PMID: 10.1016/j.yexcr.2021.1126798361780)
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2004) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0506580102. (PMID: 10.1073/pnas.0506580102404125)
Thomas PD (2017) The gene ontology and the meaning of biological function. Methods Mol Biol 1446:15–24. https://doi.org/10.1007/978-1-4939-3743-1&#95;2. (PMID: 10.1007/978-1-4939-3743-1_26438694)
TungmunnithumD DS, Hano C (2022) Flavonoids from sacred lotus stamen extract slows chronological aging in yeast model by reducing oxidative stress and maintaining Cellular Metabolism. Cells 11:599. https://doi.org/10.3390/cells11040599. (PMID: 10.3390/cells11040599)
Vendrely R, Alexandrov K, De Sousa Lechner MC, Coirault Y (1968) Fractionation of ribonucleic acids by ‘Sephadex’ agarose gel electrophoresis. Nature 218(5138):293–294. https://doi.org/10.1038/218293a0. (PMID: 10.1038/218293a0)
Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484. (PMID: 10.1038/nrg24842949280)
Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928. https://doi.org/10.1083/jcb.201708007. (PMID: 10.1083/jcb.2017080075987716)
Warraich UEA, Hussain F, Kayani HUR (2020) Aging - oxidative stress, antioxidants and computational modeling. Heliyon 6(5):e04107. https://doi.org/10.1016/j.heliyon.2020.e04107. (PMID: 10.1016/j.heliyon.2020.e041077264715)
Wiciński M, Erdmann J, NowackaA, Kuźmiński O, Michalak K, Janowski K, Ohla J, Biernaciak A, Szambelan M, Zabrzyński J (2023) Natural phytochemicals as SIRT activators—focus on potential biochemical mechanisms. Nutrients 15:3578. https://doi.org/10.3390/nu15163578. (PMID: 10.3390/nu1516357810459499)
Wierman MB, Smith JS (2014) Yeast sirtuins and the regulation of aging. FEMS Yeast Res 14(1):73–88. https://doi.org/10.1111/1567-1364.12115. (PMID: 10.1111/1567-1364.12115)
Wolfe AR, Meehan T (1994) The effect of sodium ion concentration on intrastrand base-pairing in single-stranded DNA. Nucleic Acids Res 22(15):3147–3150. https://doi.org/10.1093/nar/22.15.3147. (PMID: 10.1093/nar/22.15.3147310288)
Wu X, Liu C, Yang S, Shen N, Wang Y, Zhu Y, Guo Z, Yang SY, Xing D, Li H, Guo Z, Chen B, Xiang H (2021) Glycine-serine-threonine metabolic axis delays intervertebral disc degeneration through antioxidant effects: an imaging and metabonomics study. Oxid Med Cell Longev 2021:5579736. https://doi.org/10.1155/2021/5579736. (PMID: 10.1155/2021/55797368416401)
Yalcin G, Lee CK (2019) Recent studies on anti-aging compounds with Saccharomyces cerevisiae as a model organism. Transl Med Aging 3:109–115. https://doi.org/10.1016/j.tma.2019.10.001. (PMID: 10.1016/j.tma.2019.10.001)
Yang B, Kirchmaier AL (2006) Bypassing the catalytic activity of SIR2 for SIR protein spreading in saccharomyces cerevisiae. Mol Biol Cell 17(12):5287–5297. https://doi.org/10.1091/mbc.e06-08-0669. (PMID: 10.1091/mbc.e06-08-06691679691)
Younus H (2018) Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim) 12(3):88–93.
Zhang F, Kerbl-Knapp J, Akhmetshina A, Korbelius M, Kuentzel KB, Vujić N, Hörl G, Paar M, Kratky D, Steyrer E, Madl T (2021) Tissue-specific landscape of metabolic dysregulation during ageing. Biomolecules 11(2):235. https://doi.org/10.3390/biom11020235. (PMID: 10.3390/biom110202357914945)
Zhao H, Chen J, Liu J, Han B (2015) Transcriptome analysis reveals the oxidative stress response in saccharomyces cerevisiae. RSC Adv 5(29):22923–22934. https://doi.org/10.1039/C4RA14600J. (PMID: 10.1039/C4RA14600J)
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L (2020) Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis 11(4):927–945. https://doi.org/10.14336/AD.2019.0820. (PMID: 10.14336/AD.2019.08207390530)
Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, Carmona-Gutierrez D (2018) Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res 18(6):foy020. https://doi.org/10.1093/femsyr/foy020. (PMID: 10.1093/femsyr/foy0206001894)
معلومات مُعتمدة: 1001/CIPPM /8012229 Universiti Sains Malaysia
فهرسة مساهمة: Keywords: Polyalthia longifolia; SIR2; SOD genes; Saccharomyces cerevisiae; Anti-aging; RNA sequencing; Transcriptomic analysis
المشرفين على المادة: Y4S76JWI15 (Methanol)
0 (Plant Extracts)
0 (Saccharomyces cerevisiae Proteins)
0 (Silent Information Regulator Proteins, Saccharomyces cerevisiae)
EC 3.5.1.- (SIR2 protein, S cerevisiae)
EC 3.5.1.- (Sirtuin 2)
EC 1.15.1.1 (Superoxide Dismutase)
EC 1.15.1.1 (superoxide dismutase 2)
EC 1.15.1.1 (Superoxide Dismutase-1)
تواريخ الأحداث: Date Created: 20240415 Date Completed: 20240701 Latest Revision: 20240725
رمز التحديث: 20240726
DOI: 10.1007/s10522-024-10104-y
PMID: 38619670
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6768
DOI:10.1007/s10522-024-10104-y