دورية أكاديمية

A spatiotemporal atlas of mouse liver homeostasis and regeneration.

التفاصيل البيبلوغرافية
العنوان: A spatiotemporal atlas of mouse liver homeostasis and regeneration.
المؤلفون: Xu J; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Guo P; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China. guopengcheng@genomics.cn.; 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China. guopengcheng@genomics.cn., Hao S; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China., Shangguan S; BGI Research, Shenzhen, China.; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China., Shi Q; Department of Biology, University of Copenhagen, Copenhagen, Denmark., Volpe G; Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy., Huang K; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand., Zuo J; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., An J; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Yuan Y; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Cheng M; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Deng Q; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China., Zhang X; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China., Lai G; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China.; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Nan H; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China., Wu B; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China., Shentu X; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China., Wu L; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Wei X; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Jiang Y; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Huang X; BGI Research, Shenzhen, China.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China., Pan F; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Song Y; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Li R; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Wang Z; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Liu C; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China.; BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China., Liu S; BGI Research, Hangzhou, China.; BGI Research, Shenzhen, China., Li Y; BGI Research, Shenzhen, China., Yang T; China National GeneBank, BGI Research, Shenzhen, China.; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China., Xu Z; China National GeneBank, BGI Research, Shenzhen, China.; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China., Du W; China National GeneBank, BGI Research, Shenzhen, China.; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China., Li L; China National GeneBank, BGI Research, Shenzhen, China.; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China., Ahmed T; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., You K; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Dai Z; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Li L; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Qin B; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Li Y; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Lai L; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China., Qin D; The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China., Chen J; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China., Fan R; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China., Li Y; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China., Hou J; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China., Ott M; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany., Sharma AD; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany., Cantz T; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany., Schambach A; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.; Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany., Kristiansen K; Department of Biology, University of Copenhagen, Copenhagen, Denmark., Hutchins AP; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China., Göttgens B; Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK., Maxwell PH; Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK., Hui L; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China., Xu X; BGI Research, Hangzhou, China. xuxun@genomics.cn.; BGI Research, Shenzhen, China. xuxun@genomics.cn.; BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China. xuxun@genomics.cn.; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China. xuxun@genomics.cn., Liu L; BGI Research, Hangzhou, China. liulongqi@genomics.cn.; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China. liulongqi@genomics.cn.; BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China. liulongqi@genomics.cn., Chen A; BGI Research, Shenzhen, China. chenao@genomics.cn.; Department of Biology, University of Copenhagen, Copenhagen, Denmark. chenao@genomics.cn.; BGI Research, Chongqing, China. chenao@genomics.cn.; JFL-BGI STOmics Center, BGI-Shenzhen, Chongqing, China. chenao@genomics.cn., Lai Y; BGI Research, Hangzhou, China. laiyiwei@genomics.cn.; BGI Research, Shenzhen, China. laiyiwei@genomics.cn.; 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China. laiyiwei@genomics.cn.; BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China. laiyiwei@genomics.cn., Esteban MA; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China. miguelesteban@genomics.cn.; 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China. miguelesteban@genomics.cn.; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. miguelesteban@genomics.cn.; Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. miguelesteban@genomics.cn.; The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. miguelesteban@genomics.cn.; Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany. miguelesteban@genomics.cn.
المصدر: Nature genetics [Nat Genet] 2024 May; Vol. 56 (5), pp. 953-969. Date of Electronic Publication: 2024 Apr 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Co Country of Publication: United States NLM ID: 9216904 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1718 (Electronic) Linking ISSN: 10614036 NLM ISO Abbreviation: Nat Genet Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Co., c1992-
مواضيع طبية MeSH: Liver Regeneration*/genetics , Homeostasis* , Liver*/metabolism , Wnt Signaling Pathway*/genetics, Animals ; Mice ; Hepatocytes/metabolism ; Hepatocytes/cytology ; Cell Proliferation/genetics ; Single-Cell Analysis ; Gene Regulatory Networks ; Gene Expression Profiling/methods ; Transcriptome ; Mice, Inbred C57BL ; Receptors, Cytoplasmic and Nuclear/genetics ; Receptors, Cytoplasmic and Nuclear/metabolism ; Male
مستخلص: The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/β-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.
(© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017). (PMID: 28166538532158010.1038/nature21065)
Halpern, K. B. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018). (PMID: 30222169654659610.1038/nbt.4231)
He, L. et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371, 6532 (2021). (PMID: 10.1126/science.abc4346)
Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021). (PMID: 3276474010.1038/s41575-020-0342-4)
Hildebrandt, F. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021). (PMID: 34857782864007210.1038/s41467-021-27354-w)
Guo, P. C. et al. Cell atlas of CCl 4 -induced progressive liver fibrosis reveals stage-specific responses. Zool. Res. 44, 451–466 (2023). (PMID: 369945361023630210.24272/j.issn.2095-8137.2023.031)
Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022). (PMID: 35021063880925210.1016/j.cell.2021.12.018)
Ben-Moshe, S. et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 29, 973–989.e10 (2022). (PMID: 3565987910.1016/j.stem.2022.04.008)
Afriat, A. et al. A spatiotemporally resolved single-cell atlas of the Plasmodium liver stage. Nature 611, 563–569 (2022). (PMID: 3635222010.1038/s41586-022-05406-5)
Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022). (PMID: 3551270510.1016/j.cell.2022.04.003)
Mitchell, C. & Willenbring, H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 3, 1167–1170 (2008). (PMID: 1860022110.1038/nprot.2008.80)
Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660.e5 (2019). (PMID: 31398325726268010.1016/j.molcel.2019.07.028)
Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019). (PMID: 31722201685672210.1016/j.celrep.2019.10.024)
Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022). (PMID: 3360320310.1038/s41587-021-00830-w)
Sun, T. et al. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell 28, 1822–1837.e10 (2021). (PMID: 3412981310.1016/j.stem.2021.05.013)
Cho, C. S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572.e22 (2021). (PMID: 34115981823891710.1016/j.cell.2021.05.010)
Huang, H., Yuan, D., Li, M., Abulaiti, A. & Lu, F. Active HBV replication in hypoxic pericentral zone 3 is upregulated by multiple host factors including HIF-1α. J. Hepatol. 77, 265–267 (2022). (PMID: 3521979010.1016/j.jhep.2022.01.031)
Kowalik, M. A. et al. TRβ is the critical thyroid hormone receptor isoform in T3-induced proliferation of hepatocytes and pancreatic acinar cells. J. Hepatol. 53, 686–692 (2010). (PMID: 2063874310.1016/j.jhep.2010.04.028)
Li, C. Y. et al. Recombinant human hepassocin stimulates proliferation of hepatocytes in vivo and improves survival in rats with fulminant hepatic failure. Gut 59, 817–826 (2010). (PMID: 1988096710.1136/gut.2008.171124)
Wei, Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371, eabb1625 (2021). (PMID: 33632817849642010.1126/science.abb1625)
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017). (PMID: 28991892593767610.1038/nmeth.4463)
Perissi, V., Aggarwal, A., Glass, C. K., Rose, D. W. & Rosenfeld, M. G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116, 511–526 (2004). (PMID: 1498021910.1016/S0092-8674(04)00133-3)
Ou-Yang, Q. et al. Distinct role of nuclear receptor corepressor 1 regulated de novo fatty acids synthesis in liver regeneration and hepatocarcinogenesis in mice. Hepatology 67, 1071–1087 (2018). (PMID: 2896038010.1002/hep.29562)
Zhuang, Q. et al. NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nat. Cell Biol. 20, 400–412 (2018). (PMID: 2953131010.1038/s41556-018-0047-x)
Jakobsen, J. S. et al. Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Res. 23, 592–603 (2013). (PMID: 23403033361357710.1101/gr.146399.112)
Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021). (PMID: 3323978710.1038/s41586-020-2977-2)
Winkler, M. et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J. Hepatol. 74, 380–393 (2021). (PMID: 3291621610.1016/j.jhep.2020.08.033)
Inverso, D. et al. A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie–Wnt signaling axis in the liver. Dev. Cell 56, 1677–1693.e10 (2021). (PMID: 34038707819149410.1016/j.devcel.2021.05.001)
Schmidt, M. H. H. et al. Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat. Cell Biol. 11, 873–880 (2009). (PMID: 1950307310.1038/ncb1896)
Do, N. et al. BMP4 is a novel paracrine inhibitor of liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1220–G1227 (2012). (PMID: 23019195353245710.1152/ajpgi.00105.2012)
DeTomaso, D. & Yosef, N. Hotspot identifies informative gene modules across modalities of single-cell genomics. Cell Syst. 12, 446–456.e9 (2021). (PMID: 3395145910.1016/j.cels.2021.04.005)
Shao, X. et al. CellTalkDB: a manually curated database of ligand–receptor interactions in humans and mice. Brief. Bioinform. 22, bbaa269 (2021). (PMID: 3314762610.1093/bib/bbaa269)
Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021). (PMID: 33597522788987110.1038/s41467-021-21246-9)
Brosch, M. et al. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat. Commun. 9, 4150 (2018). (PMID: 30297808617586210.1038/s41467-018-06611-5)
Duan, J. L. et al. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 68, 677–690 (2018). (PMID: 2942085810.1002/hep.29834)
Zhao, D. et al. ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J. Clin. Invest. 132, e150489 (2022). (PMID: 34874921880333110.1172/JCI150489)
Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol. 7, 224 (2016). (PMID: 27375622490103410.3389/fimmu.2016.00224)
Brazovskaja, A. et al. Cell atlas of the regenerating human liver after portal vein embolization. Preprint at bioRxiv https://doi.org/10.1101/2021.06.03.444016 (2021).
Huang, J. & Rudnick, D. A. Elucidating the metabolic regulation of liver regeneration. Am. J. Pathol. 184, 309–321 (2014). (PMID: 24139945390648710.1016/j.ajpath.2013.04.034)
Li, W. et al. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell 25, 54–68.e5 (2019). (PMID: 3127174810.1016/j.stem.2019.06.008)
Chembazhi, U. V., Bangru, S., Hernaez, M. & Kalsotra, A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res. 31, 576–591 (2021). (PMID: 33649154801585310.1101/gr.267013.120)
Li, L. et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. Cell Stem Cell 30, 283–299.e9 (2023). (PMID: 3678774010.1016/j.stem.2023.01.009)
Perugorria, M. J. et al. Wnt-β-catenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol. 16, 121–136 (2019). (PMID: 3045197210.1038/s41575-018-0075-9)
Kakugawa, S. et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519, 187–192 (2015). (PMID: 25731175437648910.1038/nature14259)
Belenguer, G. et al. RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state. Nat. Commun. 13, 334 (2022). (PMID: 35039505876407310.1038/s41467-021-27923-z)
Ben-Moshe, S. et al. Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899–911 (2019). (PMID: 31535084675108910.1038/s42255-019-0109-9)
Jia, Y. et al. In vivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. Cell Stem Cell 29, 372–385.e8 (2022). (PMID: 35090595889723310.1016/j.stem.2022.01.001)
Goddard, L. M. et al. Hemodynamic forces sculpt developing heart valves through a KLF2–WNT9B paracrine signaling axis. Dev. Cell 43, 274–289.e5 (2017). (PMID: 29056552576019410.1016/j.devcel.2017.09.023)
Wang, H., Zhang, Y. & Heuckeroth, R. O. Tissue-type plasminogen activator deficiency exacerbates cholestatic liver injury in mice. Hepatology 45, 1527–1537 (2007). (PMID: 1753893010.1002/hep.21613)
Sillen, M. & Declerck, P. J. A narrative review on plasminogen activator inhibitor-1 and its (patho)physiological role: To target or not to target? Int. J. Mol. Sci. 22, 2721 (2021). (PMID: 33800359796280510.3390/ijms22052721)
Otsuka, T. et al. Overexpression of NK2 inhibits liver regeneration after partial hepatectomy in mice. World J. Gastroenterol. 11, 7444–7449 (2005). (PMID: 16437714472517410.3748/wjg.v11.i47.7444)
Xu, C. P., Ji, W. M., van den Brink, G. R. & Peppelenbosch, M. P. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver. World J. Gastroenterol. 12, 7621–7625 (2006). (PMID: 17171790408804310.3748/wjg.v12.i47.7621)
Haridoss, S. et al. Activin A is a prominent autocrine regulator of hepatocyte growth arrest. Hepatol. Commun. 1, 852–870 (2017). (PMID: 29404498572146310.1002/hep4.1106)
Chabicovsky, M., Herkner, K. & Rossmanith, W. Overexpression of activin β C or activin β E in the mouse liver inhibits regenerative deoxyribonucleic acid synthesis of hepatic cells. Endocrinology 144, 3497–3504 (2003). (PMID: 1286533110.1210/en.2003-0388)
Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014). (PMID: 2425672810.1038/nature12681)
Xu, M. et al. LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell 178, 1478–1492.e20 (2019). (PMID: 3147436210.1016/j.cell.2019.07.021)
Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416–419 (2014). (PMID: 2445864110.1126/science.1244880)
Pei, X. H., Lv, X. Q. & Li, H. X. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1. Biochem. Biophys. Res. Commun. 446, 322–327 (2014). (PMID: 2460790410.1016/j.bbrc.2014.02.109)
Su, J. et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature 577, 566–571 (2020). (PMID: 31915377745066610.1038/s41586-019-1897-5)
Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619.e15 (2018). (PMID: 30500539649738610.1016/j.cell.2018.11.012)
Liu, C. et al. An ATAC-seq atlas of chromatin accessibility in mouse tissues. Sci. Data 6, 65 (2019). (PMID: 31110271652769410.1038/s41597-019-0071-0)
Diril, M. K. et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl Acad. Sci. USA 109, 3826–3831 (2012). (PMID: 22355113330972510.1073/pnas.1115201109)
Tan, X., Behari, J., Cieply, B., Michalopoulos, G. K. & Monga, S. P. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. Gastroenterology 131, 1561–1572 (2006). (PMID: 1710132910.1053/j.gastro.2006.08.042)
Fujita, J. et al. Effect of TNF gene depletion on liver regeneration after partial hepatectomy in mice. Surgery 129, 48–54 (2001). (PMID: 1115003310.1067/msy.2001.109120)
Tajima, T. et al. HIF-1α is necessary to support gluconeogenesis during liver regeneration. Biochem. Biophys. Res. Commun. 387, 789–794 (2009). (PMID: 1964308310.1016/j.bbrc.2009.07.115)
Kohjima, M. et al. Delayed liver regeneration after partial hepatectomy in adipose differentiation related protein-null mice. J. Hepatol. 59, 1246–1254 (2013). (PMID: 23928401400173210.1016/j.jhep.2013.07.025)
Borude, P. et al. Hepatocyte-specific deletion of farnesoid X receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice. Hepatology 56, 2344–2352 (2012). (PMID: 2273008110.1002/hep.25918)
Liu, Y. et al. Role for the endoplasmic reticulum stress sensor IRE1α in liver regenerative responses. J. Hepatol. 62, 590–598 (2015). (PMID: 2545721110.1016/j.jhep.2014.10.022)
Argemi, J. et al. X-box binding protein 1 regulates unfolded protein, acute-phase, and DNA damage responses during regeneration of mouse liver. Gastroenterology 152, 1203–1216.e15 (2017). (PMID: 2808207910.1053/j.gastro.2016.12.040)
Boj, S. F. et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151, 1595–1607 (2012). (PMID: 2326014510.1016/j.cell.2012.10.053)
Kachaylo, E. et al. PTEN down-regulation promotes β-oxidation to fuel hypertrophic liver growth after hepatectomy in mice. Hepatology 66, 908–921 (2017). (PMID: 2843783510.1002/hep.29226)
Li, J. & Wang, C. Y. TBL1–TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat. Cell Biol. 10, 160–169 (2008). (PMID: 1819303310.1038/ncb1684)
Gougelet, A. et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 59, 2344–2357 (2014). (PMID: 2421491310.1002/hep.26924)
Liang, N. et al. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat. Commun. 10, 1684 (2019). (PMID: 30975991645987610.1038/s41467-019-09524-z)
Sun, X. et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell 18, 456–466 (2016). (PMID: 27044474482629810.1016/j.stem.2016.03.001)
Liu, W. et al. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 2288–2293 (2016). (PMID: 26858440477652610.1073/pnas.1525093113)
Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021). (PMID: 34450029877239510.1016/j.cell.2021.08.003)
Prizant, H. et al. CXCL10 + peripheral activation niches couple preferred sites of Th1 entry with optimal APC encounter. Cell Rep. 36, 109523 (2021). (PMID: 34380032921898210.1016/j.celrep.2021.109523)
Liao, S. et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen tissue based on stereo-seq. Preprint at bioRxiv https://doi.org/10.1101/2023.04.28.538364 (2023).
Wu, B. et al. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat. Genet. https://doi.org/10.1038/s41588-024-01687-w (2024).
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018). (PMID: 29961576677127810.1016/j.cell.2018.05.061)
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018). (PMID: 29409532580205410.1186/s13059-017-1382-0)
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). (PMID: 30944313644762210.1038/s41467-019-09234-6)
Gong, C. et al. SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics. Gigabyte https://gigabytejournal.com/articles/111 (2024).
Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022). (PMID: 3541868610.1038/s41586-022-04587-3)
Hao, S. J. haoshijie13/LISTA: LISTA_code_V1 (LISTA_V1_20240228). Zenodo https://doi.org/10.5281/zenodo.10720177 (2024).
معلومات مُعتمدة: 32370848 National Natural Science Foundation of China (National Science Foundation of China); 92168202 National Natural Science Foundation of China (National Science Foundation of China); 32200688 National Natural Science Foundation of China (National Science Foundation of China)
تواريخ الأحداث: Date Created: 20240416 Date Completed: 20240516 Latest Revision: 20240520
رمز التحديث: 20240521
DOI: 10.1038/s41588-024-01709-7
PMID: 38627598
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1718
DOI:10.1038/s41588-024-01709-7