دورية أكاديمية

Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress.

التفاصيل البيبلوغرافية
العنوان: Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress.
المؤلفون: Zhao X; Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China., Wang S; College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China., Guo F; College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China. yngfg@sina.cn., Xia P; College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China.
المصدر: BMC genomics [BMC Genomics] 2024 Apr 16; Vol. 25 (1), pp. 370. Date of Electronic Publication: 2024 Apr 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2000-
مواضيع طبية MeSH: Chenopodium quinoa*/genetics , Chenopodium quinoa*/metabolism, Phylogeny ; Temperature ; Polyamines/metabolism ; Ethylenes/metabolism
مستخلص: Background: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress.
Results: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network.
Conclusions: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.
(© 2024. The Author(s).)
References: Plant Sci. 2011 Jan;180(1):31-8. (PMID: 21421344)
Trends Plant Sci. 2018 Apr;23(4):311-323. (PMID: 29428350)
Cells. 2021 Nov 24;10(12):. (PMID: 34943791)
Plants (Basel). 2021 Feb 28;10(3):. (PMID: 33670959)
New Phytol. 2020 Jun;226(5):1506-1516. (PMID: 31967665)
Int J Mol Sci. 2022 Sep 02;23(17):. (PMID: 36077395)
Amino Acids. 2012 Feb;42(2-3):813-30. (PMID: 21861167)
Plant Physiol. 2006 Nov;142(3):1202-15. (PMID: 17012402)
Front Plant Sci. 2019 May 07;10:561. (PMID: 31134113)
Plant Sci. 2012 Jan;182:94-100. (PMID: 22118620)
Elife. 2015 Jul 23;4:. (PMID: 26203563)
J Integr Plant Biol. 2014 Feb;56(2):114-21. (PMID: 24401132)
Plant Sci. 2020 Mar;292:110372. (PMID: 32005378)
New Phytol. 2021 Jan;229(2):770-782. (PMID: 32790878)
Amino Acids. 2014 Mar;46(3):729-42. (PMID: 24337930)
Plant Physiol Biochem. 2010 Jul;48(7):513-20. (PMID: 20227886)
Plant Physiol Biochem. 2018 Jul;128:152-162. (PMID: 29778839)
Cells. 2021 Jan 28;10(2):. (PMID: 33525668)
Front Plant Sci. 2016 Jul 28;7:1104. (PMID: 27516763)
PLoS One. 2013;8(4):e60325. (PMID: 23577102)
Foods. 2020 Feb 19;9(2):. (PMID: 32092899)
Front Plant Sci. 2019 May 29;10:695. (PMID: 31191592)
Front Plant Sci. 2022 Jun 29;13:911804. (PMID: 35845682)
Plant Cell. 2020 Apr;32(4):1018-1034. (PMID: 32060178)
PLoS One. 2020 Aug 31;15(8):e0236226. (PMID: 32866160)
Physiol Mol Biol Plants. 2021 Jun;27(6):1353-1359. (PMID: 34220045)
J Biol Chem. 2003 Dec 5;278(49):49102-12. (PMID: 12968022)
Gene. 2018 Jun 30;661:1-10. (PMID: 29605609)
Plant Physiol. 2015 Sep;169(1):32-41. (PMID: 26103991)
Planta. 2008 Aug;228(3):367-81. (PMID: 18594857)
Plant Cell Physiol. 2003 Jan;44(1):62-9. (PMID: 12552148)
Plant Physiol. 2011 Aug;156(4):2266-77. (PMID: 21628628)
Physiol Plant. 2001 Nov;113(3):424-429. (PMID: 12060289)
J Biotechnol. 2022 Jan 20;344:1-10. (PMID: 34915092)
New Phytol. 2003 Jul;159(1):109-115. (PMID: 33873679)
Plant Physiol Biochem. 2006 Jan;44(1):49-57. (PMID: 16531054)
Int J Biol Macromol. 2022 Nov 30;221:585-603. (PMID: 36075308)
Plant J. 2001 Sep;27(6):551-60. (PMID: 11576438)
Amino Acids. 2012 Feb;42(2-3):411-26. (PMID: 21874532)
Cell Mol Life Sci. 2003 Jul;60(7):1394-406. (PMID: 12943227)
Cells. 2022 Dec 21;12(1):. (PMID: 36611825)
Methods Mol Biol. 2018;1694:37-49. (PMID: 29080153)
Antioxidants (Basel). 2022 Dec 17;11(12):. (PMID: 36552696)
Int J Mol Sci. 2021 May 12;22(10):. (PMID: 34066274)
Amino Acids. 2017 Jan;49(1):49-56. (PMID: 28039518)
Front Plant Sci. 2022 Nov 08;13:975073. (PMID: 36426144)
J Exp Bot. 2000 Nov;51(352):1843-9. (PMID: 11113162)
Nutrients. 2022 Jan 27;14(3):. (PMID: 35276913)
Plant J. 2010 Sep;63(5):836-47. (PMID: 20584149)
فهرسة مساهمة: Keywords: Chenopodium quinoa Willd.; Ethylene synthesis; Gene family analysis; Low-temperature stress; Polyamine biosynthesis; Polyamine catabolism
المشرفين على المادة: 0 (Polyamines)
0 (Ethylenes)
تواريخ الأحداث: Date Created: 20240416 Date Completed: 20240418 Latest Revision: 20240425
رمز التحديث: 20240425
مُعرف محوري في PubMed: PMC11020822
DOI: 10.1186/s12864-024-10265-7
PMID: 38627628
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2164
DOI:10.1186/s12864-024-10265-7