دورية أكاديمية

A conceptual framework on the role of magnetic cues in songbird migration ecology.

التفاصيل البيبلوغرافية
العنوان: A conceptual framework on the role of magnetic cues in songbird migration ecology.
المؤلفون: Karwinkel T; Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.; Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany., Peter A; Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany., Holland RA; School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK., Thorup K; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark., Bairlein F; Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.; Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany., Schmaljohann H; Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.; Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany.
المصدر: Biological reviews of the Cambridge Philosophical Society [Biol Rev Camb Philos Soc] 2024 Aug; Vol. 99 (4), pp. 1576-1593. Date of Electronic Publication: 2024 Apr 17.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Cambridge University Press Country of Publication: England NLM ID: 0414576 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-185X (Electronic) Linking ISSN: 00063231 NLM ISO Abbreviation: Biol Rev Camb Philos Soc Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, Cambridge University Press.
مواضيع طبية MeSH: Animal Migration*/physiology , Songbirds*/physiology , Cues*, Animals ; Magnetic Fields
مستخلص: Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth's magnetic field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological principles for orientation and navigation research, specifically by comparing experiments on caged birds with experiments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endurance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel conceptual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory. Notably, many such studies have produced contradictory results so that understanding the biological importance of magnetic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments is high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reactions of birds to the study conditions and by the bird's high flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.
(© 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)
References: Able, K. P. (1982a). The effects of overcast skies on the orientation of free‐flying nocturnal migrants. In Avian Navigation. Proceedings in Life Sciences (eds F. Papi and H. G. Wallraff), pp. 38–49. Springer, Berlin, Heidelberg.
*Able, K. P. (1982b). Field studies of avian nocturnal migratory orientation I. Interaction of sun, wind and stars as directional cues. Animal Behaviour 30, 761–767.
*Able, K. P. (1982c). Skylight polarization patterns at dusk influence migratory orientation in birds. Nature 299(5883), 550–551.
*Able, K. P. (1989). Skylight polarization patterns and the orientation of migratory birds. Journal of Experimental Biology 141(1), 241–256.
Able, K. P. & Able, M. A. (1993). Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization. Nature 364, 523–525.
*Able, K. P. & Able, M. A. (1995). Interactions in the flexible orientation system of a migratory bird. Nature 375, 230–232.
*Åkesson, S. & Bäckmann, J. (1999). Orientation in pied flycatchers: the relative importance of magnetic and visual information at dusk. Animal Behaviour 57, 819–828.
Åkesson, S. & Hedenström, A. (2007). How migrants get there: migratory performance and orientation. BioScience 57(2), 123–133.
*Åkesson, S., Jonzén, N., Pettersson, J., Rundberg, M. & Sandberg, R. (2006). Effects of magnetic manipulations on orientation: comparing diurnal and nocturnal passerine migrants on Capri, Italy in autumn. Ornis Svecica 16, 55–61.
Åkesson, S., Karlsson, L., Walinder, G. & Alerstam, T. (1996). Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behavioral Ecology and Sociobiology 38(5), 293–302.
Åkesson, S., Morin, J., Muheim, R. & Ottoson, U. (2001). Avian orientation at steep angles of inclination: experiments with migratory white‐crowned sparrows at the magnetic North Pole. Proceedings of the Royal Society London B 268, 1907–1913.
Åkesson, S., Morin, J., Muheim, R. & Ottosson, U. (2005). Dramatic orientation shift of white‐crowned sparrows displaced across longitudes in the high arctic. Current Biology 15, 1591–1597.
Alerstam, T. (1987). Bird migration across a strong magnetic anomaly. Journal of Experimental Biology 130, 63–86.
Alerstam, T. (1990). Bird Migration. Cambridge University Press, Cambridge.
Alerstam, T. & Lindström, Å. (1990). Optimal bird migration: the relative importance of time, energy and safety. Bird migration: Physiology and Ecophysiology 331, 351.
Bairlein, F. (1991). Body mass of Garden Warblers (Sylvia borin) on migration: a review of field data. Vogelwarte 36, 48–61.
Bairlein, F. (1993). Ecophysiological problems of Arctic migrants in the hot tropics. Annalen ‐ Koninklijk Museum voor Midden‐Afrika. Zoologische Wetenschappen 268, 571–578.
Bairlein, F., Dierschke, J., Dierschke, V., Salewski, V., Geiter, O., Hüppop, K., Köppen, U. & Fiedler, W. (2014). Atlas des Vogelzugs. Ringfunde deutscher Brut‐ und Gastvögel. AULA‐Verlag, Wiebelsheim.
Bairlein, F. & Gwinner, E. (1994). Nutritional mechanisms and temporal control of migratory energy accumulation in birds. Annual Review of Nutrition 14, 187–215.
Bayly, N. J. (2007). Extreme fattening by sedge warblers, Acrocephalus schoenobaenus, is not triggered by food availability alone. Animal Behaviour 74, 471–479.
Bayly, N. J., Gómez, C. & Hobson, K. A. (2013). Energy reserves stored by migrating gray‐cheeked thrushes Catharus minimus at a spring stopover site in northern Colombia are sufficient for a long‐distance flight to North America. Ibis 155(2), 271–283.
*Beason, R. C., Dussourd, N. & Deutschlander, M. E. (1995). Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. Journal of Experimental Biology 198, 141–146.
Beason, R. C. & Semm, P. (1996). Does the avian ophthalmic nerve carry magnetic navigational information? Journal of Experimental Biology 199(5), 1241–1244.
*Beck, W. & Wiltschko, W. (1986). Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca Pallas). In Acta XIX Congressus Internationalis Ornithologici (Volume 2) (ed H. Ouellet), National Museum of Natural Sciences by University of Ottawa Press, Ottawa, Canada.
Benitez‐Paez, F., da Silva Brum‐Bastos, V., Beggan, C. D., Long, J. A. & Demšar, U. (2021). Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration. Movement Ecology 9(1), 1–19.
Berthold, P. (1973). Relationships between migratory restlessness and migration distance in six Sylvia species. Ibis 115, 594–599.
Berthold, P. (1991). Spatiotemporal programmes and genetics of orientation. Orientation in Birds 60, 86–105.
Berthold, P. (1996). Control of Bird Migration. Chapman and Hall, London.
Biebach, H. (1985). Sahara stopover in migratory flycatchers: fat and food affect the time program. Experientia 41, 695–697.
Biebach, H., Friedrich, W. & Heine, G. (1986). Interaction of bodymass, fat, foraging and stopover period in trans‐Sahara migrating passerine birds. Oecologia 69, 370–379.
*Bingman, V. P. & Wiltschko, W. (1988). Orientation of Dunnocks (Prunella modularis) at sunset. Ethology 77, 1–9.
Bloxham, J. & Gubbins, D. (1985). The secular variation of Earth's magnetic field. Nature 317, 777–781.
*Bojarinova, J., Kavokin, K., Fedorishcheva, A., Sannikov, D., Cherbunin, R., Pakhomov, A. & Chernetsov, N. (2023). Oscillating magnetic field does not disrupt orientation in the presence of stellar cues in an avian migrant. Journal of Ornithology 165, 347–354.
*Bojarinova, J., Kavokin, K., Pakhomov, A., Cherbunin, R., Anashina, A., Erokhina, M., Ershova, M. & Chernetsov, N. (2020). Magnetic compass of garden warblers is not affected by oscillating magnetic fields applied to their eyes. Scientific Reports 10(1).
Boström, J. E., Åkesson, S. & Alerstam, T. (2012a). Where on earth can animals use a geomagnetic bi‐coordinate map for navigation? Ecography 35(11), 1039–1047.
*Boström, J. E., Fransson, T., Henshaw, I., Jakobsson, S., Kullberg, C. & Åkesson, S. (2010). Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe. Behavioral Ecology and Sociobiology 64, 1725–1732.
*Boström, J. E., Kullberg, C. & Åkesson, S. (2012b). Northern magnetic displacements trigger endogenous fuelling responses in a naive bird migrant. Behavioral Ecology and Sociobiology 66, 819–821.
Bridge, E. S., Thorup, K., Bowlin, M. S., Chilson, P. B., Diehl, R. H., Fléron, R. W., Hartl, P., Kays, R., Kelly, J. F., Robinson, W. D. & Wikelski, M. (2011). Technology on the move: recent and forthcoming innovations for tracking migratory birds. BioScience 61, 689–698.
Brown, J. M. & Taylor, P. D. (2015). Adult and hatch‐year blackpoll warblers exhibit radically different regional‐scale movements during post‐fledging dispersal. Biology Letters 11(12), 20150593.
Brown, J. M. & Taylor, P. D. (2017). Migratory blackpoll warblers (Setophaga striata) make regional‐scale movements that are not oriented toward their migratory goal during fall. Movement Ecology 5, 15.
Bruderer, B. (1994). Nocturnal bird migration in the Negev (Israel) – a tracking radar study. Ostrich 65, 204–212.
Bruderer, B. & Liechti, F. (1998). Flight behaviour of nocturnally migrating birds in coastal areas – crossing or coasting. Journal of Avian Biology 29, 499–507.
Bulte, M., Heyers, D., Mouritsen, H. & Bairlein, F. (2017). Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. Journal of Avian Biology 48(1), 75–82.
Casper, R. M. (2009). Guidelines for the instrumentation of wild birds and mammals. Animal Behaviour 78(6), 1477–1483.
Chernetsov, N., Kishkinev, D., Gashkov, S., Kosarev, V. & Bolshakov, C. V. (2008a). Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from Siberia implies a detour around Central Asia. Animal Behaviour 75(2), 539–545.
Chernetsov, N., Kishkinev, D., Kosarev, V. & Bolshakov, C. V. (2011). Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. Journal of Experimental Biology 214, 2540–2543.
Chernetsov, N., Kishkinev, D. & Mouritsen, H. (2008b). A long‐distance avian migrant compensates for longitudinal displacement during spring migration. Current Biology 18(3), 188–190.
Chernetsov, N., Pakhomov, A., Davydov, A., Cellarius, F. & Mouritsen, H. (2020). No evidence for the use of magnetic declination for migratory navigation in two songbird species. PLoS One 15(4), e0232136.
Chernetsov, N., Pakhomov, A., Kobylkov, D., Kishkinev, D., Holland, R. A. & Mouritsen, H. (2017). Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Current Biology 27(17), 2647–2651.
Cochran, W. W., Mouritsen, H. & Wikelski, M. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304, 405–408.
Delingat, J., Bairlein, F. & Hedenström, A. (2008). Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern wheatears (Oenanthe oenanthe). Behavioral Ecology and Sociobiology 62, 1069–1078.
Delingat, J., Dierschke, V., Schmaljohann, H., Mendel, B. & Bairlein, F. (2006). Daily stopovers as optimal migration strategy in a long‐distance migrating passerine: the northern wheatear Oenanthe oenanthe. Ardea‐Wageningen 94(3), 593.
Dierschke, V. & Delingat, J. (2003). Stopover of northern wheatears Oenanthe oenanthe at Helgoland: where do the migratory routes of Scandinavian and Nearctic birds join and split? Ornis Svecica 13, 53–61.
Dierschke, V., Mendel, B. & Schmaljohann, H. (2005). Differential timing of spring migration in northern wheatears Oenanthe oenanthe: hurried males or weak females? Behavioral Ecology and Sociobiology 57, 470–480.
Eikenaar, C., Hessler, S. & Hegemann, A. (2020a). Migrating birds rapidly increase constitutive immune function during stopover. Royal Society Open Science 7(2), 192031.
Eikenaar, C., Klinner, T., Szostek, K. L. & Bairlein, F. (2014). Migratory restlessness in captive individuals predicts actual departure in the wild. Biology Letters 10(4), 20140154.
Eikenaar, C., Ostolani, A., Brust, V., Karwinkel, T., Schmaljohann, H. & Isaksson, C. (2023). The oxidative balance and stopover departure decisions in a medium‐and a long‐distance migrant. Movement Ecology 11(1), 7.
Eikenaar, C., Schaefer, J., Hessler, S., Packmor, F. & Schmaljohann, H. (2020b). Diel variation in corticosterone and departure decision making in migrating birds. Hormones and Behaviors 122, 104746.
Eikenaar, C., Winslott, E., Hessler, S. & Isaksson, C. (2020c). Oxidative damage to lipids is rapidly reduced during migratory stopovers. Functional Ecology 34, 1215–1222.
Elbers, D., Bulte, M., Bairlein, F., Mouritsen, H. & Heyers, D. (2017). Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe). Journal of Comparative Physiology A 203(8), 591–600.
Emlen, S. T. (1970a). Celestial rotation: its importance in the development of migratory orientation. Science 170, 1198–1201.
Emlen, S. T. (1970b). The influence of magnetic information on the orientation of the indigo bunting, Passerina cyanea. Animal Behaviour 18, 215–224.
Emlen, S. T. & Emlen, J. T. (1966). A technique for recording migratory orientation of captive birds. The Auk 83, 361–367.
Engels, S., Schneider, N.‐L., Lefeldt, N., Hein, C. M., Zapka, M., Michalik, A., Elbers, D., Kittel, A., Hore, P. J. & Mouritsen, H. (2014). Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356.
Fitak, R. R., Wheeler, B. R., Ernst, D. A., Lohmann, K. J. & Johnsen, S. (2017). Candidate genes mediating magnetoreception in rainbow trout (Oncorhynchus mykiss). Biology Letters 13(4), 20170142.
Fortin, D., Liechti, F. & Bruderer, B. (1999). Variation in the nocturnal flight behaviour of migratory birds along the northwest coast of the Mediterranean Sea. Ibis 141, 480–488.
*Fransson, T., Barboutis, C., Mellroth, R. & Akriotis, T. (2008). When and where to fuel before crossing the Sahara desert–extended stopover and migratory fuelling in first‐year garden warblers Sylvia borin. Journal of Avian Biology 39(2), 133–138.
Fransson, T., Jakobsson, S., Johansson, P., Kullberg, C., Lind, J. & Vallin, A. (2001). Magnetic cues trigger extensive refuelling. Nature 414, 35–36.
Fransson, T. & Weber, T. P. (1997). Migratory fueling in blackcaps (Sylvia atricapilla) under perceived risk of predation. Behavioral Ecology Sociobiology 41, 75–80.
*Gaggini, V., Baldaccini, N. E., Spina, F. & Giunchi, D. (2010). Orientation of the pied flycatcher Ficedula hypoleuca: cue‐conflict experiments during spring migration. Behavioral Ecology and Sociobiology 64, 1333–1342.
Gagliardo, A. (2013). Forty years of olfactory navigation in birds. Journal of Experimental Biology 216(12), 2165–2171.
Gagliardo, A., Bried, J., Lambardi, P., Luschi, P., Wikelski, M. & Bonadonna, F. (2013). Oceanic navigation in Cory's shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. Journal of Experimental Biology 216(15), 2798–2805.
*Giunchi, D., Vanni, L., Baldaccini, N. E., Spina, F. & Biondi, F. (2015). New cue‐conflict experiments suggest a leading role of visual cues in the migratory orientation of pied flycatchers Ficedula hypoleuca. Journal of Ornithology 156, 113–121.
Green, M., Alerstam, T., Clausen, P., Drent, R. & Ebbinge, B. S. (2002). Dark‐bellied Brent Geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis 144(1), 106–121.
Griffin, D. R. (1952). Bird navigation. Biological Reviews 27(4), 359–390.
Griffin, D. R. (1973). Oriented bird migration in or between opaque cloud layers. Proceedings of the American Philosophical Society 117(2), 117–141.
Gwinner, E., Schwabl, H. & Schwabl‐Benzinger, I. (1988). Effects of food‐deprivation on migratory restlessness and diurnal activity in the garden warbler Sylvia borin. Oecologia 77, 321–326.
Harvey, P. H., Greenwood, P. J., Campbell, B. & Stenning, M. J. (1984). Breeding dispersal of the Pied Flycatcher (Ficedula hypoleuca). Journal of Animal Ecology 83(3), 727–736.
Helbig, A. J. (1991). Inheritance of migratory direction in a bird species: a cross‐breeding experiment with SE‐ and SW‐migrating blackcaps (Sylvia atricapilla). Behavioral Ecology and Sociobiology 28, 9–12.
*Helbig, A. J. & Wiltschko, W. (1989). The skylight polarization patterns at dusk affect the orientation behavior of Blackcaps, Sylvia atricapilla. Naturwissenschaften 76, 227–229.
Henshaw, I., Fransson, T., Jakobsson, S., Jenni‐Eiermann, S. & Kullberg, C. (2009). Information from the geomagnetic field triggers a reduced adrenocortical response in a migratory bird. Journal of Experimental Biology 212(18), 2902–2907.
Henshaw, I., Fransson, T., Jakobsson, S. & Kullberg, C. (2010). Geomagnetic field affects spring migratory direction in a long distance migrant. Behavioral Ecology and Sociobiology 64(8), 1317–1323.
Henshaw, I., Fransson, T., Jakobsson, S., Lind, J., Vallin, A. & Kullberg, C. (2008). Food intake and fuel deposition in a migratory bird is affected by multiple as well as single‐step changes in the magnetic field. Journal of Experimental Biology 211, 649–653.
Heyers, D., Zapka, M., Hoffmeister, M., Wild, J. M. & Mouritsen, H. (2010). Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proceedings of the National Academy of Sciences 107(20), 9394–9399.
Hilgerloh, G., Weinbecker, J. & Zehtindjiev, P. (2006). Autumn migration of passerine long‐distance migrants in northern Morocco observed by moon‐watching. Ringing & Migration 23, 53–56.
Holland, R. A. (2003). The role of visual landmarks in the avian familiar area map. Journal of Experimental Biology 206(11), 1773–1778.
Holland, R. A. (2010). Differential effects of magnetic pulses on the orientation of naturally migrating birds. Journal of the Royal Society Interface 7(52), 1617–1625.
Holland, R. A. (2014). True navigation in birds: from quantum physics to global migration. Journal of Zoology 293(1), 1–15.
Holland, R. A. & Helm, B. (2013). A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. Journal of the Royal Society Interface 10(81), 20121047.
Holland, R. A., Thorup, K., Gagliardo, A., Bisson, I. A., Knecht, E., Mizrahi, D. & Wikelski, M. (2009). Testing the role of sensory systems in the migratory heading of a songbird. Journal of Experimental Biology 212(24), 4065–4071.
Hore, P. J. & Mouritsen, H. (2016). The Radical‐Pair Mechanism of Magnetoreception. Annual Review of Biophysics 45(1), 299–344.
*Ilieva, M., Bianco, G. & Åkesson, S. (2016). Does migratory distance affect fuelling in a medium‐distance passerine migrant?: results from direct and step‐wise simulated magnetic displacements. Biology Open 5(3), 272–278.
*Ilieva, M., Bianco, G. & Åkesson, S. (2018). Effect of geomagnetic field on migratory activity in a diurnal passerine migrant, the dunnock, Prunella modularis. Animal Behaviour 146, 79–85.
Jenni, L. & Schaub, M. (2003). Behavioural and physiological reactions to environmental variation in bird migration: a review. In Avian Migration (eds P. Berthold, E. Gwinner and E. Sonnenschein), pp. 155–171. Springer, Berlin Heidelberg.
Jungerman, R. L. & Rosenblum, B. (1980). Magnetic induction for the sensing of magnetic fields by animals—an analysis. Journal of Theoretical Biology 87(1), 25–32.
Karwinkel, T., Winklhofer, M., Christoph, P., Allenstein, D., Hüppop, O., Brust, V., Bairlein, F. & Schmaljohann, H. (2022a). No apparent effect of a magnetic pulse on free‐flight behaviour in northern wheatears (Oenanthe oenanthe) at a stopover site. Journal of the Royal Society Interface 19(187), 20210805.
Karwinkel, T., Winklhofer, M., Janner, L. E., Brust, V., Hüppop, O., Bairlein, F. & Schmaljohann, H. (2022b). A magnetic pulse does not affect free‐flight navigation behaviour of a medium‐distance songbird migrant in spring. Journal of Experimental Biology 225(19), jeb244473.
Keeton, W. T. (1971). Magnets interfere with pigeon homing. Proceedings of the National Academy of Sciences 68(1), 102–106.
Kirschvink, J. L. (1992). Uniform magnetic fields and double‐wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13(5), 401–411.
Kishkinev, D. (2015). Sensory mechanisms of long‐distance navigation in birds: a recent advance in the context of previous studies. Journal of Ornithology 156(S1), 145–161.
Kishkinev, D., Anashina, A., Ishchenko, I. & Holland, R. A. (2020). Anosmic migrating songbirds demonstrate a compensatory response following long‐distance translocation: a radio‐tracking study. Journal of Ornithology 161(1), 47–57.
Kishkinev, D., Chernetsov, N., Heyers, D. & Mouritsen, H. (2013). Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement. PLoS One 8(6), e65847.
Kishkinev, D., Chernetsov, N. & Mouritsen, H. (2010). A double‐clock or jetlag mechanism is unlikely to be involved in detection of east–west displacements in a long‐distance avian migrant. The Auk 127(4), 773–780.
Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D. & Mouritsen, H. (2015). Eurasian reed warblers compensate for virtual magnetic displacement. Current Biology 25(19), R822–R824.
Kishkinev, D., Heyers, D., Woodworth, B. K., Mitchell, G. W., Hobson, K. A. & Norris, D. R. (2016). Experienced migratory songbirds do not display goal‐ward orientation after release following a cross‐continental displacement: an automated telemetry study. Scientific Reports 6(1), 37326.
Kishkinev, D., Packmor, F., Zechmeister, T., Winkler, H. C., Chernetsov, N., Mouritsen, H. & Holland, R. A. (2021). Navigation by extrapolation of geomagnetic cues in a migratory songbird. Current Biology 31(7), 1563–1569.
Klinner, T., Buddemeier, J., Bairlein, F. & Schmaljohann, H. (2020). Decision‐making in migratory birds at stopover: an interplay of energy stores and feeding conditions. Behavioral Ecology and Sociobiology 74, 1–14.
*Kobylkov, D., Wynn, J., Winklhofer, M., Chetverikova, R., Xu, J., Hiscock, H., Hore, P. & Mouritsen, H. (2019). Electromagnetic 0.1–100 kHz noise does not disrupt orientation in a night‐migrating songbird implying a spin coherence lifetime of less than 10 μs. Journal of the Royal Society Interface 16(161), 20190716.
Komenda‐Zehnder, S., Liechti, F. & Bruderer, B. (2002). Is reverse migration a common feature of nocturnal bird migration? – an analysis of radar data from Israel. Ardea 90(2), 325–334.
Kullberg, C., Henshaw, I., Jakobsson, S., Johansson, P. & Fransson, T. (2007). Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proceedings of the Royal Society London B 274, 2145–2151.
Kullberg, C., Lind, J., Fransson, T., Jakobsson, S. & Vallin, A. (2003). Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proceedings of the Royal Society London B 270, 373–378.
Landler, L., Painter, M. S., Youmans, P. W., Hopkins, W. A. & Phillips, J. B. (2015). Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PLoS One 10(5), e0124728.
Larkin, T. S. & Keeton, W. T. (1976). Bar magnets mask the effect of normal magnetic disturbances on pigeon orientation. Journal of Comparative Physiology 110(3), 227–231.
*Leberecht, B., Kobylkov, D., Karwinkel, T., Döge, S., Burnus, L., Wong, S. Y., Apte, S., Haase, K., Musielak, I. & Chetverikova, R. (2022). Broadband 75–85 MHz radiofrequency fields disrupt magnetic compass orientation in night‐migratory songbirds consistent with a flavin‐based radical pair magnetoreceptor. Journal of Comparative Physiology A 208(1), 97–106.
Leberecht, B., Wong, S. Y., Satish, B., Döge, S., Hindman, J., Venkatraman, L., Apte, S., Haase, K., Musielak, I. & Dautaj, G. (2023). Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night‐migratory songbirds. Proceedings of the National Academy of Sciences 120(28), e2301153120.
Lefeldt, N., Dreyer, D., Schneider, N. L., Steenken, F. & Mouritsen, H. (2015). Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination. Journal of Experimental Biology 218(2), 206–211.
Liechti, F. (2001). Calibrating the moon‐watching method – chances and limits. Avian Ecology and Behaviour 7, 27–40.
Liechti, F., Bruderer, B. & Paproth, H. (1995). Quantification of nocturnal bird migration by moonwatching: comparison with radar and infrared observations. Journal of Field Ornithology 66, 457–468.
Liechti, F., Peter, D., Lardelli, R. & Bruderer, B. (1996). Die Alpen, ein Hindernis im nächtlichen Breitfrontzug – eine großräumige Übersicht nach Mondbeobachtungen. Journal für Ornithologie 137, 337–356.
Linscott, J. A. & Senner, N. R. (2021). Beyond refueling: investigating the diversity of functions of migratory stopover events. The Condor 123(1), duaa074.
Liu, X. & Chernetsov, N. (2012). Avian orientation: multi‐cue integration and calibration of compass systems. Chinese Birds 3(1), 1–8.
Lohmann, K. J., Goforth, K. M., Mackiewicz, A. G., Lim, D. S. & Lohmann, C. M. F. (2022). Magnetic maps in animal navigation. Journal of Comparative Physiology A 208, 41–67.
Lohmann, K. J. & Johnsen, S. (2000). The neurobiology of magnetoreception in vertebrate animals. Trends in Neurosciences 23(4), 153–159.
Lohmann, K. J. & Lohmann, C. M. (1996). Detection of magnetic field intensity by sea turtles. Nature 380(6569), 59–61.
Lchmus, M., Sandberg, R., Holberton, R. L. & Moore, F. R. (2003). Corticosterone levels in relation to migratory readiness in red‐eyed vireos (Vireo olivaceus). Behavioral Ecology and Sociobiology 54(3), 233–239.
Malkemper, E. P., Kagerbauer, D., Ushakova, L., Nimpf, S., Pichler, P., Treiber, C. D., de Jonge, M., Shaw, J. & Keays, D. A. (2019). No evidence for a magnetite‐based magnetoreceptor in the lagena of pigeons. Current Biology 29(1), R14–R15.
Massa, B., Ioalè, S. B. P., Lo Valvo, M. & Papi, F. (1991). Homing of Cory's shearwaters (Calonectris diomedea) carrying magnets. Italian Journal of Zoology 58(3), 245–247.
McKinnon, E. A. & Love, O. P. (2018). Ten years tracking the migrations of small landbirds: lessons learned in the golden age of bio‐logging. The Auk: Ornithological Advances 135(4), 834–856.
McLaren, J. D., Schmaljohann, H. & Blasius, B. (2022). Predicting performance of naïve migratory animals, from many wrongs to self‐correction. Communications Biology 5(1), 1058.
McLaren, J. D., Schmaljohann, H. & Blasius, B. (2023). Gauge‐and‐compass migration: inherited magnetic headings and signposts can adapt to changing geomagnetic landscapes. Movement Ecology 11(1), 37.
Merkel, F. & Fromme, H. (1958). Untersuchungen über das Orientierungsvermögen nächtlich ziehender Rotkehlchen (Erithacus rubecula). Naturwissenschaften 45, 499–500.
Merkel, F. W. & Wiltschko, W. (1965). Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula). Vogelwarte 23, 71–77.
Merritt, R., Purcell, C. & Stroink, G. (1983). Uniform magnetic field produced by three, four, and five square coils. Review of Scientific Instruments 54(7), 879–882.
Mewaldt, L. R. (1964). California sparrows return from displacement to Maryland. Science 146(3646), 941–942.
Mewaldt, L. R., Cowley, L. T. & Won, P.‐O. (1973). California sparrows fail to return from displacement to Korea. The Auk 90(4), 857–861.
Milner‐Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. (2011). Animal Migration: A Synthesis. Oxford University Press, UK.
Mirzaei, G., Majid, M. W., Ross, J., Jamali, M. M., Gorsevski, P. V., Frizado, J. P. & Bingman, V. P. (2012). Avian detection & tracking algorithm using infrared imaging. In 2012 IEEE International Conference on Electro/Information Technology, pp. 1–4. IEEE, Indianapolis, USA.
Moore, F. R. (1985). Integration of environmental stimuli in the migratory orientation of the savannah sparrow (Passerculus sandwichensis). Animal Behaviour 33(2), 657–663.
*Moore, F. R. (1986). Sunrise, skylight polarization, and the early morning orientation of night‐migrating warblers. The Condor 88, 493–498.
Moore, F. R. (1987a). Moonlight and the migratory orientation of savannah sparrows (Passerculus sandwichensis). Ethology 75(2), 155–162.
Moore, F. R. (1987b). Sunset and the orientation behaviour of migrating birds. Biological Reviews 62, 65–86.
*Moore, F. R. & Phillips, J. B. (1988). Sunset, skylight polarization and the migratory orientation of yellow‐rumped warblers, Dendroica coronata. Animal Behaviour 36, 1770–1778.
Moore, F. R. & Yong, W. (1991). Evidence of food‐based competition among passerine migrants during stopover. Behavioral Ecology and Sociobiology 28, 83–90.
Mouritsen, H. (1998a). Modelling migration: the clock‐and‐compass model can explain the distribution of ringing recoveries. Animal Behaviour 56, 899–907.
Mouritsen, H. (1998b). Redstarts, Phoenicurus phoenicurus, can orient in a true‐zero magnetic field. Animal Behaviour 55, 1311–1324.
Mouritsen, H. (2018). Long‐distance navigation and magnetoreception in migratory animals. Nature 558(7708), 50–59.
Mouritsen, H., Feenders, G., Liedvogel, M. & Kropp, W. (2004). Migratory birds use head scans to detect the direction of the Earth's magnetic field. Current Biology 14, 1946–1949.
Mouritsen, H., Huyvaert, K. P., Frost, B. J. & Anderson, D. J. (2003). Waved albatrosses can navigate with strong magnets attached to their head. Journal of Experimental Biology 206(22), 4155–4166.
Mouritsen, H. & Larsen, O. N. (1998). Migrating young pied flycatchers Ficedula hypoleuca do not compensate for geographical displacements. Journal of Experimental Biology 201, 2927–2934.
Mouritsen, H. & Larsen, O. N. (2001). Migrating songbirds tested in computer‐controlled Emlen funnels use stellar cues for a time‐independent compass. Journal of Experimental Biology 204, 3855–3865.
Mouritsen, H. & Mouritsen, O. (2000). A mathematical expectation model for bird navigation based on the clock‐and‐compass strategy. Journal of Theoretical Biology 207, 283–291.
*Muheim, R., Åkesson, S. & Phillips, J. B. (2008). Response to R. Wiltschko et al. (J. Ornithol.): contradictory results on the role of polarized light in compass calibration in migratory songbirds. Journal of Ornithology 149, 659–662.
Muheim, R., Henshaw, I., Sjöberg, S. & Deutschlander, M. E. (2014). BirdOriTrack: a new video‐tracking program for orientation research with migratory birds. Journal of Field Ornithology 85, 91–105.
*Muheim, R., Moore, F. R. & Phillips, J. B. (2006a). Calibration of magnetic and celestial compass cues in migratory birds – a review of cue‐conflict experiments. Journal of Experimental Biology 209, 2–17.
Muheim, R., Phillips, J. B. & Åkesson, S. (2006b). Polarized light cues underlie compass calibration in migratory songbirds. Science 313, 837–839.
Müller, F., Eikenaar, C., Crysler, Z. J., Taylor, P. D. & Schmaljohann, H. (2018). Nocturnal departure timing in songbirds facing distinct migratory challenges. Journal of Animal Ecology 87(4), 1102–1115.
Müller, F., Taylor, P. D., Sjöberg, S., Muheim, R., Tsvey, A. & Schmaljohann, H. (2016). Towards a conceptual framework for explaining variation in the nocturnal departure time of songbird migrants. Movement Ecology 4, 24.
Munro, U., Munro, J. A. & Phillips, J. B. (1997a). Evidence for a magnetite‐based navigational ‘map’ in birds. Naturwissenschaften 84, 26–28.
Munro, U., Munro, J. A., Phillips, J. B. & Wiltschko, W. (1997b). Effect of wavelength of light and pulse magnetisation on different magnetoreception systems in a migratory bird. Australian Journal of Zoology 45(2), 189–198.
NCEI Geomagnetic Modeling Team; British Geological Survey (2019). World Magnetic Model 2020. NOAA National Centers for Environmental Information, Asheville, USA.
Newton, I. (2008). The Migration Ecology of Birds. Academic Press, London.
Nievergelt, F., Liechti, F. & Bruderer, B. (1999). Migratory directions of free‐flying birds versus orientation in registration cages. Journal of Experimental Biology 202, 2225–2231.
Nilsson, C., Klaassen, R. H. & Alerstam, T. (2013). Differences in speed and duration of bird migration between spring and autumn. The American Naturalist 181(6), 837–845.
Nilsson, C. & Sjöberg, S. (2016). Causes and characteristics of reverse bird migration: an analysis based on radar, radio tracking and ringing at Falsterbo, Sweden. Journal of Avian Biology 47(3), 354–362.
Nimpf, S. & Keays, D. A. (2022). Myths in magnetosensation. Iscience 25, 104454.
Nimpf, S., Nordmann, G. C., Kagerbauer, D., Malkemper, E. P., Landler, L., Papadaki‐Anastasopoulou, A., Ushakova, L., Wenninger‐Weinzierl, A., Novatchkova, M. & Vincent, P. (2019). A putative mechanism for magnetoreception by electromagnetic induction in the pigeon inner ear. Current Biology 29(23), 4052–4059.
Odum, E. P. (1963). Lipid levels in birds preparing to cross the Sahara. Ibis 105, 109–111.
Packmor, F., Kishkinev, D., Bittermann, F., Kofler, B., Machowetz, C., Zechmeister, T., Zawadzki, L. C., Guilford, T. & Holland, R. A. (2021). A magnet attached to the forehead disrupts magnetic compass orientation in a migratory songbird. Journal of Experimental Biology 224(22), jeb243337.
Packmor, F., Klinner, T., Woodworth, B. K., Eikenaar, C. & Schmaljohann, H. (2020). Stopover departure decisions in songbirds: do long‐distance migrants depart earlier and more independently of weather conditions than medium‐distance migrants? Movement Ecology 8, 6.
Pakhomov, A., Anashina, A. & Chernetsov, N. (2017). Further evidence of a time‐independent stellar compass in a night‐migrating songbird. Behavioral Ecology and Sociobiology 71(3), 1–6.
*Pakhomov, A. & Chernetsov, N. (2014). Early evening activity of migratory garden warbler Sylvia borin: compass calibration activity? Journal of Ornithology 155, 621–630.
Pakhomov, A. & Chernetsov, N. (2020). A hierarchy of compass systems in migratory birds. Biological Communications 65(3), 262–276.
*Pakhomov, A., Prokshina, A., Cellarius, F., Mouritsen, H. & Chernetsov, N. (2022). Access to the sky near the horizon and stars does not play a crucial role in compass calibration of European songbird migrants. Journal of Experimental Biology 225(16), jeb243631.
Papi, F. & Wallraff, H. G. (1982). Avian Navigation: International Symposium on Avian Navigation (ISAN) Held at Tirrenia (Pisa), September 11–14, 1981. Springer, Berlin, Heidelberg.
Patrick, S. C., Assink, J. D., Basille, M., Clusella‐Trullas, S., Clay, T. A., den Ouden, O. F. C., Joo, R., Zeyl, J. N., Benhamou, S., Christensen‐Dalsgaard, J., Evers, L. G., Fayet, A. L., Köppl, C., Malkemper, E. P., Martín López, L. M., et al. (2021). Infrasound as a cue for seabird navigation. Frontiers in Ecology and Evolution 9, 740027.
Paulin, M. G. (1995). Electroreception and the compass sense of sharks. Journal of Theoretical Biology 174(3), 325–339.
Perdeck, A. C. (1958). Two types of orientation in migrating starlings, Sturnus vulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 55(1–2).
Phillips, J. & Moore, F. R. (1992). Calibration of the sun compass by sunset polarized light patterns in a migratory bird. Behavioral Ecology and Sociobiology 31, 189–193.
Phillips, J., Muheim, R., Painter, M., Raines, J., Anderson, C., Landler, L., Dommer, D., Raines, A., Deutschlander, M. & Whitehead, J. (2022). Why is it so difficult to study magnetic compass orientation in murine rodents? Journal of Comparative Physiology A 208(1), 197–212.
Price, T. (1981). The ecology of the greenish warbler Phylloscopus trochiloides in its winter quarters. Ibis 123(2), 131–144.
Pulido, F. (2007). The genetics and evolution of avian migration. BioScience 57, 165–174.
*Rabøl, J. (1970). Displacement and phaseshift experiments with night‐migrating passerines. Ornis Scandinavica 1, 27–43.
*Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. (2004). Resonance effects indicate a radical‐pair mechanism for avian magnetic compass. Nature 429(6988), 177–180.
*Ritz, T., Wiltschko, R., Hore, P. J., Rodgers, C. T., Stapput, K., Thalau, P., Timmel, C. R. & Wiltschko, W. (2009). Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophysical Journal 96(8), 3451–3457.
Rüppel, G., Hüppop, O., Lagerveld, S., Schmaljohann, H. & Brust, V. (2023). Departure, routing and landing decisions of long‐distance migratory songbirds in relation to weather. Royal Society Open Science 10(2), 221420.
Salewski, V., Bairlein, F. & Leisler, B. (2000). Recurrence of some palaearctic migrant passerine species in West Africa. Ringing & Migration 20, 29–30.
Salewski, V., Bairlein, F. & Leisler, B. (2002). Different wintering strategies of two Palearctic migrants in West Africa–a consequence of foraging strategies? Ibis 144(1), 85–93.
Sandberg, R. (1994). Interaction of body condition and magnetic orientation in autumn migrating Robins, Erithacus rubecula. Animal Behaviour 47, 679–686.
Sandberg, R. (2003). Stored fat and the migratory orientation of birds. In Avian Migration (eds P. Berthold, E. Gwinner and E. Sonnenschein), pp. 515–525. Springer, Berlin, Heidelberg.
Sandberg, R., Bäckman, J., Moore, F. R. & Lõhmus, M. (2000). Magnetic information calibrates celestial cues during migration. Animal Behaviour 60, 453–462.
Sandberg, R. & Moore, F. R. (1996). Migratory orientation of red‐eyed vireos, Vireo olivaceus, in relation to energetic condition and ecological context. Behavioral Ecology and Sociobiology 39, 1–10.
Sandberg, R., Moore, F. R., Bäckman, J. & Lõhmus, M. (2002). Orientation of nocturnally migrating Swainson's thrush at dawn and dusk: importance of energetic conditon and geomagnetic cues. The Auk 119, 201–219.
Sandberg, R., Ottosson, U. & Pettersson, J. (1991). Magnetic orientation of migratory wheatears (Oenanthe oenanthe) in Sweden and Greenland. Journal of Experimental Biology 155, 51–64.
*Schaub, M. & Jenni, L. (2000a). Body mass of six long‐distance migrant passerine species along the autumn migration route. Journal für Ornithologie 141, 441–460.
*Schaub, M. & Jenni, L. (2000b). Fuel deposition of three passerine bird species along the migration route. Oecologia 122, 306–317.
Schaub, M. & Jenni, L. (2001a). Stopover durations of three warbler species along their autumn migration route. Oecologia 128, 217–227.
Schaub, M. & Jenni, L. (2001b). Variation of fuelling rates among sites, days and individuals in migrating passerine birds. Functional Ecology 15, 584–594.
Schmaljohann, H. (2018). Proximate mechanisms affecting seasonal differences in migration speed of avian species. Scientific Reports 8, 4106.
Schmaljohann, H. & Both, C. (2017). The limits of modifying migration speed to adjust to climate change. Nature Climate Change 7, 573–576.
Schmaljohann, H. & Dierschke, V. (2005). Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe oenanthe. Journal of Animal Ecology 74, 131–138.
Schmaljohann, H. & Eikenaar, C. (2017). How do energy stores and changes in these affect departure decisions by migratory birds? – a critical view on stopover ecology studies and some future perspective. Journal of Comparative Physiology A 203, 411–429.
Schmaljohann, H., Eikenaar, C. & Sapir, N. (2022). Understanding the ecological and evolutionary function of stopover in migrating birds. Biological Reviews 97(4), 1231–1252.
Schmaljohann, H., Fox, J. W. & Bairlein, F. (2012). Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world. Animal Behaviour 84, 623–640.
Schmaljohann, H., Kämpfer, S., Fritzsch, A., Kima, R. & Eikenaar, C. (2015). Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free‐flying birds. Behavioral Ecology and Sociobiology 69, 909–914.
Schmaljohann, H., Korner‐Nievergelt, F., Naef‐Daenzer, B., Nagel, R., Maggini, I., Bulte, M. & Bairlein, F. (2013a). Stopover optimization in a long‐distance migrant: the role of fuel load and nocturnal take‐off time in Alaskan northern wheatears (Oenanthe oenanthe). Frontiers in Zoology 10, 26.
Schmaljohann, H., Liechti, F. & Bruderer, B. (2007). Songbird migration across the Sahara – the non‐stop hypothesis rejected! Proceedings of the Royal Society B: Biological Sciences 274, 735–739.
Schmaljohann, H. & Naef‐Daenzer, B. (2011). Body condition and wind support initiate shift in migratory direction and timing of nocturnal departure in a free flying songbird. Journal of Animal Ecology 80, 1115–1122.
Schmaljohann, H., Rautenberg, T., Muheim, R., Naef‐Daenzer, B. & Bairlein, F. (2013b). Response of a free‐flying songbird to an experimental shift of the light polarization pattern around sunset. Journal of Experimental Biology 216(8), 1381–1387.
Schmidt‐Koenig, K. (1990). The sun compass. Experientia 46, 336–342.
Schneider, T., Thalau, H. P., Semm, P. & Wiltschko, W. (1994). Melatonin is crucial for the migratory orientation of Pied Flycatcher (Ficedula hypoleuca Pallas). Journal of Experimental Biology 194, 255–262.
Schneider, W. T., Packmor, F., Lindecke, O. & Holland, R. A. (2023). Sense of doubt: inaccurate and alternate locations of virtual magnetic displacements may give a distorted view of animal magnetoreception ability. Communications Biology 6(1), 187.
Schwabl, H., Bairlein, F. & Gwinner, E. (1991). Basal and stress‐induced corticosterone levels of garden warblers, Sylvia borin, during migration. Journal of Comparative Physiology B 161(6), 576–580.
Schwarze, S., Schneider, N.‐L., Reichl, T., Dreyer, D., Lefeldt, N., Engels, S., Baker, N., Hore, P. J. & Mouritsen, H. (2016a). Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night‐migratory songbird (Erithacus rubecula) than strong narrow‐band fields. Frontiers in Behavioral Neuroscience 10, 55.
Schwarze, S., Steenken, F., Thiele, N., Kobylkov, D., Lefeldt, N., Dreyer, D., Schneider, N. L. & Mouritsen, H. (2016b). Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination. Scientific Reports 6, 33805.
Sjöberg, S. & Muheim, R. (2016). A new view on an old debate: type of cue‐conflict manipulation and availability of stars can explain the discrepancies between cue‐calibration experiments with migratory songbirds. Frontiers in Behavioral Neuroscience 10, 29.
Sjöberg, S. & Nilsson, C. (2015). Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study. Biology Letters 11, 20150337.
Skiles, D. D. (1985). The geomagnetic field. Its nature, history, and biological relevance. In Magnetite Biomineralization and Magnetoreception in Organisms (eds J. L. Kirschvink, D. S. Jones and B. J. MacFadden), pp. 43–102. Springer, Boston.
Smolinsky, J. A., Diehl, R. H., Radzio, T. A., Delaney, D. K. & Moore, F. R. (2013). Factors influencing the movement biology of migrant songbirds confronted with an ecological barrier. Behavioral Ecology and Sociobiology 67, 2041–2051.
Spina, F., Baillie, S. R., Bairlein, F., Fiedler, W. & Thorup, K. (2022). The Eurasian African Bird Migration Atlas. EURING/CMS, https://migrationatlas.org.
Taylor, P. D., Crewe, T. L., Mackenzie, S. A., Lepage, D., Aubry, Y., Crysler, Z., Finney, G., Francis, C. M., Guglielmo, C. G., Hamilton, D. J., Holberton, R. L., Loring, P. H., Mitchell, G. W., Norris, D. R., Paquet, J., et al. (2017). The Motus wildlife tracking system: a collaborative research network to enhance the understanding of wildlife movement. Avian Conservation and Ecology 18(1), 8.
Taylor, P. D., Mackenzie, S. A., Thurber, B. G., Calvert, A. M., Mills, A. M., McGuire, L. P. & Guglielmo, C. G. (2011). Landscape movements of migratory birds and bats reveal an expanded scale of stopover. PLoS One 6(11), e27054.
Thorup, K., Bisson, I.‐A., Bowlin, M. S., Holland, R. A., Wingfield, J. C., Ramenofsky, M. & Wikelski, M. (2007). Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proceedings of the National Academy of Sciences 104, 18115–18119.
Thorup, K., Ortvad, T. E., Rabøl, J., Holland, R. A., Tøttrup, A. P. & Wikelski, M. (2011). Juvenile songbirds compensate for displacement to oceanic islands during autumn migration. PLoS One 6(3), e17903.
Thorup, K. & Rabøl, J. (2007). Compensatory behaviour after displacement in migratory birds. Behavioral Ecology and Sociobiology 61(6), 825–841.
Thorup, K., Vega, M. L., Snell, K. R. S., Lubkovskaia, R., Willemoes, M., Sjöberg, S., Sokolov, L. V. & Bulyuk, V. (2020). Flying on their own wings: young and adult cuckoos respond similarly to long‐distance displacement during migration. Scientific Reports 10(1), 7698.
Totzke, U. & Bairlein, F. (1998). The body mass cycle of the migratory garden warbler (Sylvia borin) is associated with changes of basal plasma metabolite levels. Comparative Biochemistry and Physiology 121, 127–133.
Wagner, H. O. & Sauer, F. (1957). Die Sternenorientierung nächtlich ziehender Grasmücken (Sylvia atricapilla, borin and curruca). Zeitschrift für Tierpsychologie 14, 29–70.
Wikelski, M., Arriero, E., Gagliardo, A., Holland, R. A., Huttunen, M. J., Juvaste, R., Mueller, I., Tertitski, G., Thorup, K. & Wild, M. (2015). True navigation in migrating gulls requires intact olfactory nerves. Scientific Reports 5(1), 1–11.
Wikelski, M., Tarlow, E. M., Raim, A., Diehl, R. H., Larkin, R. P. & Visser, G. H. (2003). Costs of migration in free‐flying songbirds. Nature 423, 704.
Wiltschko, W. (1968). Über den Einfluss statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Zeitschrift für Tierpsychologie 25(5), 537–558.
*Wiltschko, W., Ford, H., Munro, U., Winklhofer, M. & Wiltschko, R. (2007). Magnetite‐based magnetoreception: the effect of repeated pulsing on the orientation of migratory birds. Journal of Comparative Physiology A 193(5), 515–522.
Wiltschko, W., Munro, U., Beason, R., Ford, H. & Wiltschko, R. (1994). A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50(7), 697–700.
Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. (1993). Magnetic inclination compass: a basis for the migratory orientation of birds in the northern and southern hemisphere. Experientia 49(2), 167–170.
*Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. (1998). Effect of a magnetic pulse on the orientation of silvereyes, Zosterops l. lateralis, during spring migration. Journal of Experimental Biology 201, 3257–3261.
Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. (2006). Bird navigation: what type of information does the magnetite‐based receptor provide? Proceedings of the Royal Society B: Biological Sciences 273(1603), 2815–2820.
*Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. (2009). Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proceedings of the Royal Society B: Biological Sciences 276(1665), 2227–2232.
*Wiltschko, W., Munro, U., Wiltschko, R. & Kirschvink, J. L. (2002). Magnetite‐based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. Journal of Experimental Biology 205(Pt 19), 3031–3037.
*Wiltschko, R., Thalau, P., Gehring, D., Nießner, C., Ritz, T. & Wiltschko, W. (2015). Magnetoreception in birds: the effect of radio‐frequency fields. Journal of the Royal Society Interface 12(103), 20141103.
Wiltschko, W. & Wiltschko, R. (1972). Magnetic compass of European robins. Science 176, 62–64.
*Wiltschko, W. & Wiltschko, R. (1975a). The interaction of stars and magnetic field in the orientation system of night migrating birds I. Autumn experiments with European warblers (gen. Sylvia). Zeitschrift für Tierpsychologie 37, 337–355.
*Wiltschko, W. & Wiltschko, R. (1975b). The interaction of stars and magnetic field in the orientation system of night migrating birds II. Spring experiments with European robins (Erithacus rubecula). Zeitschrift für Tierpsychologie 39, 265–282.
Wiltschko, W. & Wiltschko, R. (1992). Migratory orientation: magnetic compass orientation of garden warblers (Sylvia borin) after a simulated crossing of the magnetic equator. Ethology 91(1), 70–74.
*Wiltschko, W. & Wiltschko, R. (1995). Migratory orientation of European robins is affected by the wavelength of light as well as by a magnetic pulse. Journal of Comparative Physiology A 177(3), 363–369.
Wu, L.‐Q. & Dickman, J. D. (2011). Magnetoreception in an avian brain in part mediated by inner ear lagena. Current Biology 21(5), 418–423.
Wynn, J., Leberecht, B., Liedvogel, M., Burnus, L., Chetverikova, R., Döge, S., Karwinkel, T., Kobylkov, D., Xu, J. & Mouritsen, H. (2023). Naive songbirds show seasonally appropriate spring orientation in the laboratory despite having never completed first migration. Biology Letters 19(2), 20220478.
Wynn, J., Padget, O., Morford, J., Jaggers, P., Davies, K., Borsier, E. & Guilford, T. (2022a). How might magnetic secular variation impact avian philopatry? Journal of Comparative Physiology A 208(1), 145–154.
Wynn, J., Padget, O., Mouritsen, H., Morford, J., Jaggers, P. & Guilford, T. (2022b). Magnetic stop signs signal a European songbird's arrival at the breeding site after migration. Science 375(6579), 446–449.
Wynn, J., Padget, O., Mouritsen, H., Perrins, C. & Guilford, T. (2020). Natal imprinting to the Earth's magnetic field in a pelagic seabird. Current Biology 30(14), 2869–2873.e2.
*Yohannes, E., Biebach, H., Nikolaus, G. & Pearson, D. J. (2009). Passerine migration strategies and body mass variation along geographic sectors across East Africa, the Middle East and the Arabian peninsula. Journal of Ornithology 150(2), 369–381.
Zapka, M., Heyers, D., Hein, C. M., Engels, S., Schneider, N. L., Hans, J., Weiler, S., Dreyer, D., Kishkinev, D., Wild, J. M. & Mouritsen, H. (2009). Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461(7268), 1274–1277.
Zehnder, S., Åkesson, S., Liechti, F. & Bruderer, B. (2002). Observation of free‐flying nocturnal migrants at Falsterbo: occurrence of reverse flight directions in autumn. Avian Science 2(2), 103–113.
Zehtindjiev, P. & Liechti, F. (2003). A quantitative estimate of the spatial and temporal distribution of nocturnal bird migration in south‐eastern Europe – a coordinated moon‐watching study. Avian Science 3(1), 37–45.
Züst, Z., Mukhin, A., Taylor, P. D. & Schmaljohann, H. (2023). Pre‐migratory flights in migrant songbirds: the ecological and evolutionary importance of understudied exploratory movements. Movement Ecology 11(1), 78.
معلومات مُعتمدة: 395940726 Deutsche Forschungsgemeinschaft
فهرسة مساهمة: Keywords: bird migration; geomagnetic map; magnetic compass; magnetoreception; migration ecology; navigation; orientation
تواريخ الأحداث: Date Created: 20240417 Date Completed: 20240705 Latest Revision: 20240705
رمز التحديث: 20240705
DOI: 10.1111/brv.13082
PMID: 38629349
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-185X
DOI:10.1111/brv.13082