دورية أكاديمية

Integrated untargeted and targeted testicular metabolomics to reveal the regulated mechanism of Gushudan on the hypothalamic-pituitary-gonadal axis of kidney-yang-deficiency-syndrome rats.

التفاصيل البيبلوغرافية
العنوان: Integrated untargeted and targeted testicular metabolomics to reveal the regulated mechanism of Gushudan on the hypothalamic-pituitary-gonadal axis of kidney-yang-deficiency-syndrome rats.
المؤلفون: Lou Y; School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China., Liang Q; School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China., Xin L; School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China., Ren M; School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China., Hang Q; School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China., Qin F; School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China., Xiong Z; School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China.
المصدر: Biomedical chromatography : BMC [Biomed Chromatogr] 2024 Jul; Vol. 38 (7), pp. e5872. Date of Electronic Publication: 2024 Apr 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8610241 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-0801 (Electronic) Linking ISSN: 02693879 NLM ISO Abbreviation: Biomed Chromatogr Subsets: MEDLINE
أسماء مطبوعة: Publication: 1990- : Chichester : Wiley
Original Publication: London : Heyden & Son, c1986-1990
مواضيع طبية MeSH: Metabolomics*/methods , Yang Deficiency*/metabolism , Testis*/metabolism , Testis*/drug effects , Drugs, Chinese Herbal*/pharmacology, Animals ; Male ; Rats ; Rats, Sprague-Dawley ; Hypothalamo-Hypophyseal System/metabolism ; Hypothalamo-Hypophyseal System/drug effects ; Testosterone/metabolism ; Metabolome/drug effects ; Metabolome/physiology ; Biomarkers/metabolism ; Biomarkers/analysis ; Kidney Diseases/metabolism ; Kidney/metabolism ; Hypothalamic-Pituitary-Gonadal Axis
مستخلص: Modern studies have shown that neuroendocrine disorders caused by the dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis are one of the important pathogenetic mechanisms of kidney-yang-deficiency-syndrome (KYDS). The preventive effect of Gushudan on KYDS has been reported, but its regulatory mechanisms on the HPG axis have not been elucidated. In this study, we developed an integrated untargeted and targeted metabolomics analysis strategy to investigate the regulatory mechanism of Gushudan on the HPG axis in rats with KYDS. In untargeted metabolomics, we screened 14 potential biomarkers such as glycine, lysine, and glycerol that were significantly associated with the HPG axis. To explore the effect of changes in the levels of potential biomarkers on KYDS, all of them were quantified in targeted metabolomics. With the quantitative results, correlations between potential biomarkers and testosterone, a functional indicator of the HPG axis, were explored. The results showed that oxidative stress, inflammatory response, and energy depletion, induced by metabolic disorders in rats, were responsible for the decrease in testosterone levels. Gushudan improves metabolic disorders and restores testosterone levels, thus restoring HPG axis dysfunction. This finding elucidates the special metabolic characteristics of KYDS and the therapeutic mechanism of Gushudan from a new perspective.
(© 2024 John Wiley & Sons Ltd.)
References: Aeeni, M., Razi, M., Alizadeh, A., & Alizadeh, A. (2021). The molecular mechanism behind insulin protective effects on testicular tissue of hyperglycemic rats. Life Sciences, 277, 119394. https://doi.org/10.1016/j.lfs.2021.119394.
Ahn, S. W., Gang, G. T., Kim, Y. D., Ahn, R. S., Harris, R. A., Lee, C. H., & Choi, H. S. (2013). Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX‐1 in testicular Leydig cells. The Journal of Biological Chemistry, 288, 15937–15946. https://doi.org/10.1074/jbc.M113.451773.
Bahadir, G. B., Gollu, G., Ilkay, H., Bagriacik, U., Hasirci, N., & Bingol‐Kologlu, M. (2022). LOCAL‐IGF‐1 and GH application IMPROVES germ cell histology, spermatogenesis and fertility after experimental testicular torsion and detorsion. Journal of Pediatric Urology, 18, 410.e1–410.e8.
Barbarestani, S. Y., Samadi, F., Zaghari, M., Pirsaraei, Z. A., & Kastelic, J. P. (2024). Dietary supplementation with barley sprouts and d‐aspartic acid improves reproductive hormone concentrations, testicular histology, antioxidant status, and mRNA expressions of apoptosis‐related genes in aged broiler breeder roosters. Theriogenology, 214, 224–232. https://doi.org/10.1016/j.theriogenology.2023.10.030.
Bartlett, P. J., Metzger, W., Gaspers, L. D., & Thomas, A. P. (2015). Differential regulation of multiple steps in inositol 1,4,5‐trisphosphate signaling by protein kinase C shapes hormone stimulated Ca2+ oscillations. The Journal of Biological Chemistry, 290, 18519–18533. https://doi.org/10.1074/jbc.M115.657767.
Blind, R. D. (2020). Structural analyses of inositol phosphate second messengers bound to signaling effector proteins. Advances in Biological Regulation, 75, 100667. https://doi.org/10.1016/j.jbior.2019.100667.
Feng, Q., Tong, L., Lu, Q., Liu, S., Zhao, L., & Xiong, Z. (2022). 1H NMR serum metabolomics and its endogenous network pharmacological analysis of Gushudan on kidney‐yang‐deficiency syndrome rats. Analytical Biochemistry, 643, 114580. https://doi.org/10.1016/j.ab.2022.114580.
Fiehn, O. (2016). Metabolomics by gas chromatography‐mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 114, 1–32. https://doi.org/10.1002/0471142727.mb3004s114.
Jin, E. S., Browning, J. D., Murphy, R. E., & Malloy, C. R. (2018). Fatty liver disrupts glycerol metabolism in gluconeogenic and lipogenic pathways in humans. Journal of Lipid Research, 59, 1685–1694. https://doi.org/10.1194/jlr.M086405.
Kinoshita, K., Jingu, S., & Yamaguchi, J. (2013). A surrogate analyte method to determine D‐serine in mouse brain using liquid chromatography‐tandem mass spectrometry. Analytical Biochemistry, 432, 124–130. https://doi.org/10.1016/j.ab.2012.09.035.
Law, N. C., & Hunzicker‐Dunn, M. E. (2016). Insulin receptor substrate 1, the hub linking follicle‐stimulating hormone to phosphatidylinositol 3‐kinase activation. The Journal of Biological Chemistry, 291, 4547–4560. https://doi.org/10.1074/jbc.M115.698761.
Li, H., Zhang, D., Wang, X., Wang, S., & Xiao, M. (2023). Protective effect of glutamic‐oxaloacetic transaminase on hippocampal neurons in Alzheimer's disease using model mice. Neuroscience Letters, 803, 137194. https://doi.org/10.1016/j.neulet.2023.137194.
Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19, 998–1011. https://doi.org/10.1089/ars.2012.5074.
Liu, G., Li, Y., Liao, N., Shang, X., Xu, F., Yin, D., Shao, D., Jiang, C., & Shi, J. (2023). Energy metabolic mechanisms for high altitude sickness: Downregulation of glycolysis and upregulation of the lactic acid/amino acid‐pyruvate‐TCA pathways and fatty acid oxidation. Science of the Total Environment, 894, 164998. https://doi.org/10.1016/j.scitotenv.2023.164998.
Liu, M., Li, F., Cai, Y., Xie, D., Wu, Y., Zhang, M., Wang, Y., Dai, Y., Zheng, F., & Yue, H. (2022). Intervention effects of ginseng on spleen‐qi deficiency in rats revealed by GC‐MS‐based metabonomic approach. Journal of Pharmaceutical and Biomedical Analysis, 217, 114834. https://doi.org/10.1016/j.jpba.2022.114834.
Lu, Q., Feng, Q., Yu, J., Tong, L., Zhang, J., Sun, J., Zhao, J., & Xiong, Z. (2022). Metabolomics and serum pharmacochemistry revealed the preventive mechanism of Gushudan in kidney‐yang‐deficiency‐syndrome rats. Biomedical Chromatography, 37, e5569.
Lu, Q., Zhang, J., Xin, L., Lou, Y., Qin, F., Zhao, L., & Xiong, Z. (2023). Integrated gas chromatography‐mass spectrometry and ultra‐high‐performance liquid chromatography‐mass spectrometry renal metabolomics and lipidomics deciphered the metabolic regulation mechanism of Gushudan on kidney‐yang‐deficiency‐syndrome rats. Journal of Separation Science, 46, e2300124.
Matuszewski, B. K., Constanzer, M. L., & Chavez‐Eng, C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC‐MS/MS. Analytical Chemistry, 75, 3019–3030. https://doi.org/10.1021/ac020361s.
McMillen, T. S., Leslie, A., Chisholm, K., Penny, S., Gallant, J., Cohen, A., Drucker, A., Fawcett, J. P., & Pinto, D. M. (2023). A large‐scale, targeted metabolomics method for the analysis and quantification of metabolites in human plasma via liquid chromatography‐mass spectrometry. Analytica Chimica Acta, 1279, 341791.
Miao, L., Zhang, Y., Lin, Y., Liu, B., & Ge, X. (2021). Appropriate leucine supplementation promotes glucose metabolism and enhances energy homeostasis in juvenile crucian carp (Carassius auratus gibelio var. CAS III). Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics, 40, 100907. https://doi.org/10.1016/j.cbd.2021.100907.
Monteiro, M. S., Carvalho, M., Bastos, M. L., & Guedes de Pinho, P. (2013). Metabolomics analysis for biomarker discovery: Advances and challenges. Current Medicinal Chemistry, 20, 257–271. https://doi.org/10.2174/092986713804806621.
Morgan, P. E., Pattison, D. I., & Davies, M. J. (2012). Quantification of hydroxyl radical‐derived oxidation products in peptides containing glycine, alanine, valine, and proline. Free Radical Biology & Medicine, 52, 328–339. https://doi.org/10.1016/j.freeradbiomed.2011.10.448.
Pan, L., Wang, M., Wang, J. G., Wu, B., & Hui, K. M. (2006). Clinical and molecular evaluation of warming and tonic herb treatment for sibling patients of a typical kidney‐yang deficiency family. The American Journal of Chinese Medicine, 34, 387–400. https://doi.org/10.1142/S0192415X06003928.
Papadimitropoulos, M. P., Vasilopoulou, C. G., Maga‐Nteve, C., & Klapa, M. I. (2018). Untargeted GC‐MS metabolomics. Methods in Molecular Biology, 1738, 133–147. https://doi.org/10.1007/978-1-4939-7643-0_9.
Park, D. K., Petshow, S., Anisimova, M., Barragan, E. V., Gray, J. A., Stein, I. S., & Zito, K. (2022). Reduced d‐serine levels drive enhanced non‐ionotropic NMDA receptor signaling and destabilization of dendritic spines in a mouse model for studying schizophrenia. Neurobiology of Disease, 170, 105772.
Pathirana, I. N., Kawate, N., Büllesbach, E. E., Takahashi, M., Hatoya, S., Inaba, T., & Tamada, H. (2012). Insulin‐like peptide 3 stimulates testosterone secretion in mouse Leydig cells via cAMP pathway. Regulatory Peptides, 178, 102–106. https://doi.org/10.1016/j.regpep.2012.07.003.
Schrimpe‐Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted metabolomics strategies challenges and emerging directions. Journal of the American Society for Mass Spectrometry, 27, 1897–1905. https://doi.org/10.1007/s13361-016-1469-y.
Sepu, N., Adeleye, J. O., & Kuti, M. O. (2021). Serum testosterone in Nigerian men with type 2 diabetes mellitus and its relationship with insulin sensitivity and glycemic control. Journal of the National Medical Association, 113, 285–293. https://doi.org/10.1016/j.jnma.2020.11.014.
Shen, B., Chen, C., Hu, K., Li, X., Kang, D., Li, H., Zhu, Z., Yin, X., Xu, Y., Shen, J., Guo, H., Xie, L., Wang, G., & Liang, Y. (2018). Activated charcoal significantly improved the reliability of methods for quantitative analysis of endogenous substances in biological specimens: Glutathione and cysteine as cases. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1095, 241–250. https://doi.org/10.1016/j.jchromb.2018.08.002.
Sun, E., Huang, R., Ding, K., Wang, L., Hou, J., Tan, X., Wei, Y., Feng, L., & Jia, X. (2023). Integrating strategies of metabolomics, network pharmacology, and experiment validation to investigate the processing mechanism of epimedium fried with suet oil to warm kidneys and enhance yang. Frontiers in Pharmacology, 14, 1113213. https://doi.org/10.3389/fphar.2023.1113213.
Tang, N., Liu, L., Qiu, H., Shi, W., & Mao, D. (2018). Analysis of gene expression and functional changes of adrenal gland in a rat model of kidney yang deficiency syndrome treated with Sini decoction. Experimental and Therapeutic Medicine, 16, 3107–3115. https://doi.org/10.3892/etm.2018.6521.
Tong, L., Feng, Q., Lu, Q., Zhang, J., & Xiong, Z. (2022). Combined 1H NMR fecal metabolomics and 16S rRNA gene sequencing to reveal the protective effects of Gushudan on kidney‐yang‐deficiency ‐syndrome rats via gut‐kidney axis. Journal of Pharmaceutical and Biomedical Analysis, 217, 114843. https://doi.org/10.1016/j.jpba.2022.114843.
Uehara, T., Horinouchi, A., Morikawa, Y., Tonomura, Y., Minami, K., Ono, A., Yamate, J., Yamada, H., Ohno, Y., & Urushidani, T. (2014). Identification of metabolomic biomarkers for drug‐induced acute kidney injury in rats. Journal of Applied Toxicology, 34, 1087–1095. https://doi.org/10.1002/jat.2933.
Wu, H., Lv, Y., Zhao, M., Tang, R., Li, Y., Fang, K., Wei, F., Ge, W., Du, W., Li, C., & Zhang, Y. (2023). Study on the substance basis of the efficacy of eucommiae cortex before and after salt processing for the treatment of kidney‐yang deficiency syndrome based on the spectrum‐effect relationship. Journal of Ethnopharmacology, 318, 116926.
Yang, P., Wang, W., Chi, S., Mai, K., & Wang, L. (2020). Effects of dietary lysine on regulating GH‐IGF system, intermediate metabolism and immune response in largemouth bass (Micropterus salmoides). Aquaculture Reports, 17, 100323. https://doi.org/10.1016/j.aqrep.2020.100323.
Yuan, X., Gao, X., Yuan, Y., Ji, Y., Xiong, Z., & Zhao, L. (2021). Fe3O4/graphene molecularly imprinted composite for selective separation of catecholamine neurotransmitters and their analysis in rat brain tissues. Talanta, 224, 121843. https://doi.org/10.1016/j.talanta.2020.121843.
Zhao, S. J., Tian, J. S., Tai, G., Gao, X. X., Liu, H. L., Du, G. H., Liu, X. J., & Qin, X. M. (2019). 1H NMR‐based metabolomics revealed the protective effects of Guilingji on the testicular dysfunction of aging rats. Journal of Ethnopharmacology, 238, 111839.
Zhu, B., Liu, F., Li, X., Wang, Y., Gu, X., Dai, J., Wang, G., Cheng, Y., & Yan, C. (2015). Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Journal of Separation Science, 38, 34–41. https://doi.org/10.1002/jssc.201400899.
معلومات مُعتمدة: 82174235 National Natural Science Foundation of China; 81773694 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: GC–MS; blank matrix; hypothalamic‐pituitary‐gonadal axis; kidney‐yang‐deficiency‐syndrome; metabolomic
المشرفين على المادة: 0 (Drugs, Chinese Herbal)
3XMK78S47O (Testosterone)
0 (Biomarkers)
تواريخ الأحداث: Date Created: 20240419 Date Completed: 20240618 Latest Revision: 20240618
رمز التحديث: 20240619
DOI: 10.1002/bmc.5872
PMID: 38638009
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-0801
DOI:10.1002/bmc.5872