دورية أكاديمية

Yeast Crf1p is an activator with different roles in regulation of target genes.

التفاصيل البيبلوغرافية
العنوان: Yeast Crf1p is an activator with different roles in regulation of target genes.
المؤلفون: Kumar S; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA., Mashkoor M; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA., Balamurugan P; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA., Grove A; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
المصدر: Yeast (Chichester, England) [Yeast] 2024 Jun; Vol. 41 (6), pp. 379-400. Date of Electronic Publication: 2024 Apr 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8607637 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0061 (Electronic) Linking ISSN: 0749503X NLM ISO Abbreviation: Yeast Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester ; New York : Wiley, c1985-
مواضيع طبية MeSH: Gene Expression Regulation, Fungal* , Mechanistic Target of Rapamycin Complex 1*/metabolism , Mechanistic Target of Rapamycin Complex 1*/genetics , Saccharomyces cerevisiae*/genetics , Saccharomyces cerevisiae*/metabolism , Saccharomyces cerevisiae Proteins*/genetics , Saccharomyces cerevisiae Proteins*/metabolism, High Mobility Group Proteins/genetics ; High Mobility Group Proteins/metabolism ; Ribosomal Proteins/genetics ; Ribosomal Proteins/metabolism ; Trans-Activators
مستخلص: Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.
(© 2024 John Wiley & Sons Ltd.)
References: Albert, B., Knight, B., Merwin, J., Martin, V., Ottoz, D., Gloor, Y., Bruzzone, M. J., Rudner, A., & Shore, D. (2016). A molecular titration system coordinates ribosomal protein gene transcription with ribosomal RNA synthesis. Molecular Cell, 64, 720–733.
Albert, B., Kos‐Braun, I. C., Henras, A. K., Dez, C., Rueda, M. P., Zhang, X., Gadal, O., Kos, M., & Shore, D. (2019). A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. eLife, 8, e45002.
Albert, B., Tomassetti, S., Gloor, Y., Dilg, D., Mattarocci, S., Kubik, S., Hafner, L., & Shore, D. (2019). Sfp1 regulates transcriptional networks driving cell growth and division through multiple promoter‐binding modes. Genes and Development, 33, 288–293.
Albert, I., Mavrich, T. N., Tomsho, L. P., Qi, J., Zanton, S. J., Schuster, S. C., & Pugh, B. F. (2007). Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature, 446, 572–576.
Bayne, R. A., Jayachandran, U., Kasprowicz, A., Bresson, S., Tollervey, D., Wallace, E., & Cook, A. (2022). Yeast Ssd1 is a non‐enzymatic member of the RNase II family with an alternative RNA recognition site. Nucleic Acids Research, 50, 2923–2937.
Binda, M., Péli‐Gulli, M. P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T. W., Loewith, R., & De Virgilio, C. (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Molecular Cell, 35, 563–573.
Bose, T., Lee, K. K., Lu, S., Xu, B., Harris, B., Slaughter, B., Unruh, J., Garrett, A., McDowell, W., Box, A., Li, H., Peak, A., Ramachandran, S., Seidel, C., & Gerton, J. L. (2012). Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PLoS Genetics, 8, e1002749.
Gadal, O. (2002). Hmo1, an HMG‐box protein, belongs to the yeast ribosomal DNA transcription system. The EMBO Journal, 21, 5498–5507.
García‐Martínez, J., Singh, A., Medina, D., Chávez, S., & Pérez‐Ortín, J. E. (2023). Enhanced gene regulation by cooperation between mRNA decay and gene transcription. Biochimica et Biophysica Acta (BBA) ‐ Gene Regulatory Mechanisms, 1866, 194910.
Gómez‐Herreros, F., Margaritis, T., Rodríguez‐Galán, O., Pelechano, V., Begley, V., Millán‐Zambrano, G., Morillo‐Huesca, M., Muñoz‐Centeno, M. C., Pérez‐Ortín, J. E., de la Cruz, J., Holstege, F., & Chávez, S. (2017). The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Research, 45, 9302–9318.
González, A., & Hall, M. N. (2017). Nutrient sensing and TOR signaling in yeast and mammals. The EMBO Journal, 36, 397–408.
Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: Scanning for occurrences of a given motif. Bioinformatics, 27, 1017–1018.
Grove, A. (2018). Control of RNA polymerase II‐transcribed genes by direct binding of TOR kinase. Current Genetics, 64, 131–135.
Hall, D. B., Wade, J. T., & Struhl, K. (2006). An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Molecular and Cellular Biology, 26, 3672–3679.
Hannan, K. M., Brandenburger, Y., Jenkins, A., Sharkey, K., Cavanaugh, A., Rothblum, L., Moss, T., Poortinga, G., McArthur, G. A., Pearson, R. B., & Hannan, R. D. (2003). mTOR‐dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy‐terminal activation domain of the nucleolar transcription factor UBF. Molecular and Cellular Biology, 23, 8862–8877.
Hein, N., Hannan, K. M., George, A. J., Sanij, E., & Hannan, R. D. (2013). The nucleolus: An emerging target for cancer therapy. Trends in Molecular Medicine, 19, 643–654.
Heitman, J., Movva, N. R., & Hall, M. N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 253, 905–909.
Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D., & Brown, P. O. (2008). Diverse RNA‐binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biology, 6, e255.
James, A., Wang, Y., Raje, H., Rosby, R., & DiMario, P. (2014). Nucleolar stress with and without p53. Nucleus, 5, 402–426.
Jones, D. T., & Cozzetto, D. (2015). DISOPRED3: Precise disordered region predictions with annotated protein‐binding activity. Bioinformatics, 31, 857–863.
Jorgensen, P., Rupeš, I., Sharom, J. R., Schneper, L., Broach, J. R., & Tyers, M. (2004). A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes & Development, 18, 2491–2505.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S., Ballard, A. J., Cowie, A., Romera‐Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.
Kaeberlein, M., Powers, 3rd, R. W., Steffen, K. K., Westman, E. A., Hu, D., Dang, N., Kerr, E. O., Kirkland, K. T., Fields, S., & Kennedy, B. K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 310, 1193–1196.
Kasahara, K., Ohtsuki, K., Ki, S., Aoyama, K., Takahashi, H., Kobayashi, T., Shirahige, K., & Kokubo, T. (2007). Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae. Molecular and Cellular Biology, 27, 6686–6705.
Kim, M. S., & Hahn, J. S. (2016). Role of CK2‐dependent phosphorylation of Ifh1 and Crf1 in transcriptional regulation of ribosomal protein genes in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) ‐ Gene Regulatory Mechanisms, 1859, 1004–1013.
Knight, B., Kubik, S., Ghosh, B., Bruzzone, M. J., Geertz, M., Martin, V., Dénervaud, N., Jacquet, P., Ozkan, B., Rougemont, J., Maerkl, S. J., Naef, F., & Shore, D. (2014). Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes & Development, 28, 1695–1709.
Kornprobst, M., Turk, M., Kellner, N., Cheng, J., Flemming, D., Koš‐Braun, I., Koš, M., Thoms, M., Berninghausen, O., Beckmann, R., & Hurt, E. (2016). Architecture of the 90S pre‐ribosome: A structural view on the birth of the eukaryotic ribosome. Cell, 166, 380–393.
Kubik, S., Bruzzone, M. J., Jacquet, P., Falcone, J. L., Rougemont, J., & Shore, D. (2015). Nucleosome stability distinguishes two different promoter types at All Protein‐Coding genes in yeast. Molecular Cell, 60, 422–434.
Laribee, R. N. (2018). Transcriptional and epigenetic regulation by the mechanistic target of Rapamycin Complex 1 pathway. Journal of Molecular Biology, 430, 4874–4890.
Laughery, M. F., Hunter, T., Brown, A., Hoopes, J., Ostbye, T., Shumaker, T., & Wyrick, J. J. (2015). New vectors for simple and streamlined CRISPR‐Cas9 genome editing in Saccharomyces cerevisiae. Yeast, 32, 711–720.
Lee, J., Moir, R. D., & Willis, I. M. (2009). Regulation of RNA polymerase III transcription involves SCH9‐dependent and SCH9‐independent branches of the target of rapamycin (TOR) pathway. Journal of Biological Chemistry, 284, 12604–12608.
Lempiäinen, H., Uotila, A., Urban, J., Dohnal, I., Ammerer, G., Loewith, R., & Shore, D. (2009). Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Molecular Cell, 33, 704–716.
Li, H., Tsang, C. K., Watkins, M., Bertram, P. G., & Zheng, X. F. S. (2006). Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature, 442, 1058–1061.
Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P., & Hall, M. N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Molecular Cell, 10, 457–468.
Marion, R. M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N., & O'Shea, E. K. (2004). Sfp1 is a stress‐ and nutrient‐sensitive regulator of ribosomal protein gene expression. Proceedings of the National Academy of Sciences, 101, 14315–14322.
Martin, D. E., Soulard, A., & Hall, M. N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell, 119, 969–979.
McMillan, J., Lu, Z., Rodriguez, J. S., Ahn, T. H., & Lin, Z. (2019). YeasTSS: An integrative web database of yeast transcription start sites. Database, 2019, baz048.
Merz, K., Hondele, M., Goetze, H., Gmelch, K., Stoeckl, U., & Griesenbeck, J. (2008). Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high‐mobility group protein Hmo1 and are largely devoid of histone molecules. Genes & Development, 22, 1190–1204.
Michels, A. A., Robitaille, A. M., Buczynski‐Ruchonnet, D., Hodroj, W., Reina, J. H., Hall, M. N., & Hernandez, N. (2010). mTORC1 directly phosphorylates and regulates human MAF1. Molecular and Cellular Biology, 30, 3749–3757.
Murugesapillai, D., McCauley, M. J., Huo, R., Nelson Holte, M. H., Stepanyants, A., Maher, L. J., Israeloff, N. E., & Williams, M. C. (2014). DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome‐free chromatin. Nucleic Acids Research, 42, 8996–9004.
Panday, A., & Grove, A. (2017). Yeast HMO1: Linker histone reinvented. Microbiology and Molecular Biology Reviews, 81, e00037‐16.
Panday, A., Gupta, A., Srinivasa, K., Xiao, L., Smith, M. D., & Grove, A. (2017). DNA damage regulates direct association of TOR kinase with the RNA polymerase II‐transcribed HMO1 gene. Molecular Biology of the Cell, 28, 2449–2459.
Panday, A., Xiao, L., & Grove, A. (2015). Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double‐strand breaks. Nucleic Acids Research, 43, 5759–5770.
Paysan‐Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G., Bileschi, M., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D., Letunić, I., Marchler‐Bauer, A., Mi, H., Natale, D., Orengo, C., Pandurangan, A., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51, D418–D427.
Pelechano, V., Jimeno‐González, S., Rodríguez‐Gil, A., García‐Martínez, J., Pérez‐Ortín, J. E., & Chávez, S. (2009). Regulon‐specific control of transcription elongation across the yeast genome. PLoS Genetics, 5, e1000614.
Protchenko, O., Shakoury‐Elizeh, M., Keane, P., Storey, J., Androphy, R., & Philpott, C. C. (2008). Role of PUG1 in inducible porphyrin and heme transport in Saccharomyces cerevisiae. Eukaryotic Cell, 7, 859–871.
Reinke, A., Anderson, S., McCaffery, J. M., Yates, 3rd, J., Aronova, S., Chu, S., Fairclough, S., Iverson, C., Wedaman, K. P., & Powers, T. (2004). TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. Journal of Biological Chemistry, 279, 14752–14762.
Reja, R., Vinayachandran, V., Ghosh, S., & Pugh, B. F. (2015). Molecular mechanisms of ribosomal protein gene coregulation. Genes & Development, 29, 1942–1954.
Rudra, D., Mallick, J., Zhao, Y., & Warner, J. R. (2007). Potential interface between ribosomal protein production and pre‐rRNA processing. Molecular and Cellular Biology, 27, 4815–4824.
Rudra, D., & Warner, J. R. (2016). A CURIous case of molecular kidnapping. Molecular Cell, 64, 639–640.
Sabatini, D. M., 2017 Twenty‐five years of mTOR: Uncovering the link from nutrients to growth. Proceedings of the National Academy of Sciences 114 11818–11825.
Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar‐Peled, L., & Sabatini, D. M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320, 1496–1501.
Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 169, 361–371.
Schawalder, S. B., Kabani, M., Howald, I., Choudhury, U., Werner, M., & Shore, D. (2004). Growth‐regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature, 432, 1058–1061.
Sikorski, R. S., & Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19–27.
Sturgill, T. W., Cohen, A., Diefenbacher, M., Trautwein, M., Martin, D. E., & Hall, M. N. (2008). TOR1 and TOR2 have distinct locations in live cells. Eukaryotic Cell, 7, 1819–1830.
Tsang, C. K. (2003). Chromatin‐mediated regulation of nucleolar structure and RNA Pol I localization by TOR. The EMBO Journal, 22, 6045–6056.
Tsang, C. K., Liu, H., & Zheng, X. F. S. (2010). mTOR binds to the promoters of RNA polymerase I‐ and III‐transcribed genes. Cell Cycle, 9, 953–957.
Tye, B. W., & Churchman, L. S. (2021). Hsf1 activation by proteotoxic stress requires concurrent protein synthesis. Molecular Biology of the Cell, 32, 1800–1806.
Tye, B. W., Commins, N., Ryazanova, L. V., Wühr, M., Springer, M., Pincus, D., & Churchman, L. S. (2019). Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. eLife, 8, e43002.
Vannini, A., Ringel, R., Kusser, A. G., Berninghausen, O., Kassavetis, G. A., & Cramer, P. (2010). Molecular basis of RNA polymerase III transcription repression by Maf1. Cell, 143, 59–70.
Vizoso‐Vazquez, A., Barreiro‐Alonso, A., Gonzalez‐Siso, M. I., Rodriguez‐Belmonte, E., Lamas‐Maceiras, M., & Cerdán, M. E. (2018). HMGB proteins involved in TOR signaling as general regulators of cell growth by controlling ribosome biogenesis. Current Genetics, 64, 1205–1213.
Vizoso‐Vazquez, A., Lamas‐Maceiras, M., Gonzalez‐Siso, M. I., & Cerdan, M. E. (2018). Ixr1 regulates ribosomal gene transcription and yeast response to cisplatin. Scientific Reports, 8, 3090.
Wade, J. T., Hall, D. B., & Struhl, K. (2004). The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature, 432, 1054–1058.
Wapinski, I., Pfiffner, J., French, C., Socha, A., Thompson, D. A., & Regev, A. (2010). Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Proceedings of the National Academy of Sciences, 107 5505–5510.
Wei, Y. (2012). Immunofluorescence analysis of yeast protein. Bio‐protocol, 2, BioProtoc.211.
Wei, Y., Tsang, C. K., & Zheng, X. F. S. (2009). Mechanisms of regulation of RNA polymerase III‐dependent transcription by TORC1. The EMBO Journal, 28, 2220–2230.
Woolford, Jr., J. L., & Baserga, S. J. (2013). Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics, 195, 643–681.
Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology, 16, 18–29.
Xiao, L., & Grove, A. (2009). Coordination of ribosomal protein and ribosomal RNA gene expression in response to TOR signaling. Current Genomics, 10, 198–205.
Xiao, L., Kamau, E., Donze, D., & Grove, A. (2011). Expression of yeast high mobility group protein HMO1 is regulated by TOR signaling. Gene, 489, 55–62.
Xiao, L., Williams, A. M., & Grove, A. (2010). The C‐terminal domain of yeast high mobility group protein HMO1 mediates lateral protein accretion and in‐phase DNA bending. Biochemistry, 49, 4051–4059.
Zencir, S., Dilg, D., Rueda, M. P., Shore, D., & Albert, B. (2020). Mechanisms coordinating ribosomal protein gene transcription in response to stress. Nucleic Acids Research, 48, 11408–11420.
Zhao, Y., McIntosh, K. B., Rudra, D., Schawalder, S., Shore, D., & Warner, J. R. (2006). Fine‐structure analysis of ribosomal protein gene transcription. Molecular and Cellular Biology, 26, 4853–4862.
معلومات مُعتمدة: National Science Foundation
فهرسة مساهمة: Keywords: Hmo1p; Ifh1p; Sfp1p; Utp22p; gene regulation; mTORC1
المشرفين على المادة: 0 (High Mobility Group Proteins)
0 (HMO1 protein, S cerevisiae)
0 (IFH1 protein, S cerevisiae)
EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
0 (Ribosomal Proteins)
0 (Saccharomyces cerevisiae Proteins)
0 (Trans-Activators)
0 (CRF1 protein, S cerevisiae)
تواريخ الأحداث: Date Created: 20240419 Date Completed: 20240610 Latest Revision: 20240617
رمز التحديث: 20240617
DOI: 10.1002/yea.3939
PMID: 38639144
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0061
DOI:10.1002/yea.3939