دورية أكاديمية

Distribution of copper in the Atlantic and Pacific Oceans using green turtles (Chelonia mydas) as a bioindicator.

التفاصيل البيبلوغرافية
العنوان: Distribution of copper in the Atlantic and Pacific Oceans using green turtles (Chelonia mydas) as a bioindicator.
المؤلفون: Fraga NS; Laboratório de Nectologia, Programa de Pós-Graduação em Oceanografia Ambiental, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 414, Vitória, Espírito Santo, 29075-910, Brazil. nairanabio@gmail.com., Martins AS; Laboratório de Nectologia, Programa de Pós-Graduação em Oceanografia Ambiental, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 414, Vitória, Espírito Santo, 29075-910, Brazil.; Laboratório de Nectologia, Departamento de Oceanografia e Ecologia, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari, 414, Vitória, Espírito Santo, 29075-910, Brazil., Faust DR; Environmental Sciences and Technology Program, Clover Park Technical College, 4500 Steilacoom Blvd. SW, Lakewood, WA, 98499, USA., da Silva CC; Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada (PPGCF - FAC), Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil., Bianchini A; Instituto de Ciências Biológicas - ICB, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil., Aguirre AA; Department of Fish, Wildlife and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, 80523, USA., Sakai H; Environment Research Division, Health Effects Research, Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki, 305-0082, Japan.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 May; Vol. 31 (22), pp. 31967-31977. Date of Electronic Publication: 2024 Apr 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Turtles*/metabolism , Copper*/analysis , Water Pollutants, Chemical*/analysis, Animals ; Pacific Ocean ; Atlantic Ocean ; Environmental Monitoring ; Brazil ; Liver/metabolism ; Liver/chemistry ; Kidney/chemistry ; Japan ; Texas
مستخلص: Marine pollution by trace elements is a global concern due to potential toxicity to species and ecosystems. Copper is a fundamental trace element for many organisms; however, it becomes toxic at certain concentrations. The green turtle (Chelonia mydas) is a good sentinel species, due to its circumglobal distribution, long life cycle, coastal habits when juvenile, and is subject to environmental pollution. Quantifying and comparing copper levels makes it possible to understand the availability of this trace element in nature. During this research, comparisons were made between the levels of copper found in the liver, kidneys, and muscles of 35 turtles, from the United States (Hawaii and Texas), Brazil, and Japan. Copper was found in all specimens. In the liver, animals from Hawaii (91.08 µg g -1 ), Texas (46.11 µg g -1 ), and Japan (65.18 µg g -1 ) had statistically equal means, while those from Brazil (16. 79 µg g -1 ) had the lowest means. For the kidney, copper means were statistically equal for all Hawaii (3.71 µg g -1 ), Texas (4.83 µg g -1 ), Japan (2.47 µg g -1 ), and Brazil (1.89 µg g -1 ). In muscle, the means between Texas (0.75 µg g -1 ) and Japan (0.75 µg g -1 ) were the same, and the mean for Brazil (0.13 µg g -1 ) was the lowest. Among the organs, the highest levels of copper were found in the liver (28.33 µg g -1 ) followed by the kidney (2.25 µg g -1 ) and with the lowest levels in the muscle (0.33 µg g -1 ). This is the first study of copper levels among marine vertebrates in distant parts of the globe using similar comparative filters between different locations. Similar levels in turtles from such distant locations may indicate that there is a pantropical pattern of copper distribution in the biota, and that these animals are subject to the process of bioavailability of this metal in the environment and metabolic regulation.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aguirre AA, Balazs GH, Zimmerman B, Galey FD (1994) Organic contaminants and trace metals in the tissues of green turtles (Chelonia mydas) afflicted with fibropapillomas in the Hawaiian Islands. Mar Pollut Bull 28(2):109–114.
Anan Y, Kunito T, Sakai H, Tanabe S (2002) Subcellular distribution of trace elements in the liver of sea turtles. Mar Pollut Bull 45(1–12):224–229. (PMID: 10.1016/S0025-326X(02)00106-6)
ATSDR (Agency for Toxic Substances and Disease Registry) (2022) Atlanta toxicological profile for copper; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA.
Baraj B, Niencheski LF, Corradi C (2003) Trace metal content trend of mussel Perna perna (Linnaeus, 1758) from the Atlantic coast of southern Brazil. Water Air Soil Pollut 145:205–214. (PMID: 10.1023/A:1023614822121)
Baraj B, Niencheski LF, Windom H, Hermanns L (2009) Concentração de metais traço no fígado, rim e coração de focas sul-americanas (Arctocephalus australis) do sul do Brasil. Boletim De Poluição Marinha 58:1922–1952.
Barbieri E (2009) Concentration of heavy metals in tissues of green turtles (Chelonia mydas) sampled in the Cananeia estuary, Brazil. Braz J Oceanogr 57:243–248. http://www.scielo.br/pdf/bjoce/v57n3/v57n3a07.pdf.
Bremner I (1998) Manifestations of copper excess. Am J Clin Nutr 67(Suppl):1069–73S. (PMID: 10.1093/ajcn/67.5.1069S)
Caurant F, Bustamante P, Bordes M, Miramand P (1999) Bioaccumulation of cadmium, copper and zinc in some tissues of three species of marine turtles stranded along the French Atlantic coasts. Mar Pollut Bull 38(12):1085–1091.
da Silva CC, Varela Jr AS, Barcarolli IF, Bianchini A (2014) Concentrations and distributions of metals in tissues of stranded green sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil. Sci Total Environ 466:109–118.
Embassy of Japan (2012) Japan regions. https://www.br.emb-japan.go.jp/itprtop&#95;pt/index.Html . Accessed 15 Apr 2020.
Espejo W, Celis JE, González-Acuña D, Banegas A, Barra R, Chiang G (2017) A global overview of exposure levels and biological effects of trace elements in penguins. Rev Environ Contam Toxicol 245:1–64.
Faust DR, Hooper MJ, Cobb GP, Barnes M, Ertolacci DSS, Smith PN (2014) Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues. Environ Toxicol Chem 33:2020–2027. https://doi.org/10.1002/etc.2650. (PMID: 10.1002/etc.2650)
Fraga NS, Martins AS, Faust DR, Sakai H, Bianchini A, da Silva CC, Aguirre AA (2018) Cadmium in tissues of green turtles (Chelonia mydas): a global perspective for marine biota. Sci Total Environ 637:389–397. (PMID: 10.1016/j.scitotenv.2018.04.317)
Fraga NS, Martins AS, Bianchini A, Faust DR, Sakai H, Da Silva CC, Aguirre AA (2023) Pantropical distribution of zinc in green turtles (Chelonia mydas): marine vertebrates as sentiel species. Environ Sci Pollut Res 30(17):50509–50519.
Garcia JG (2011) Acumulação de elementos traços em organismos no estuário da Lagoa dos Patos. Universidade Federal do Rio Grande, Rio Grande, RS, Dissertação de Mestrado, p 105.
Gardner SC, Fitzgerald SL, Vargas BA, Rodríguez LM (2006) Heavy metal accumulation in four species of sea turtles from the Baja California peninsula, Mexico. Biometals 19:91–99. (PMID: 10.1007/s10534-005-8660-0)
Gerpe MS, de Leon AP, Bastida R, Moreno VJ, Rodriguez DH (2009) Sharp accumulation of heavy metals after weaning in the South American fur seal Arctocephalus australis. Mar Ecol-Prog Ser 375:239. (PMID: 10.3354/meps07799)
Gerpe M, Moreno J, Prrez A, Bastida R, Rodriguez D, Marcovecchio J (1990) Trace metals in the southamerican fur seal, Arctocephalus australis (Zimmermann, 1783). In Proceedings of the 4th International Conference on Environmental Contamination, Barcelona, pp 591–593.
Godley BJ, Thompson DR, Furness RW (1999) Do heavy metal concentrations pose a threat to marine turtles from the Mediterranean Sea? Mar Pollut Bull 38:497–502.
IUCN (2023) The IUCN red list of threatened species. Version 2022–2.  https://www.iucnredlist.org . Accessed 2 Jan 2023.
Jakimska A, Konieczka P, Skora K, Namieśnik J (2011) Bioaccumulation of metals in tissues of marine animals, part I: the role and impact of heavy metals on organisms. Pol J Environ Stud 20:1117–1125.
Lam JCW, Tanabe S, Chan SKF, Yuen EKW, Lam MHW, Lam PKS (2004) Trace element residues in tissues of green turtles (Chelonia mydas) from South China waters. Mar Pollut Bull 48:164–192. (PMID: 10.1016/j.marpolbul.2003.09.003)
Limpus CJ, Miller JD (1990) The use of measured Scutes of Hawksbill Turtles, Eretmochelys-Imbricata, in the Management of the Tortoiseshell (Bekko) Trade. Wildlife Res 17(6):633–639.
Maia CB, Almeida ACM, Moreira FR (2006) Avaliação do teor de chumbo em mexilhões da espécie Perna perna na região metropolitana da cidade do Rio de Janeiro. J Braz Soc Ecotoxicol 1(2):195–198. https://doi.org/10.5132/jbse.2006.02.020. (PMID: 10.5132/jbse.2006.02.020)
Marcovecchio JE, Moreno VJ, Bastida RO, Gerpe MS, Rodriguez DH (1990) Tissue distribution of heavy metals in small cetaceans from the Southwestern Atlantic Ocean. Mar Pollut Bull 21(6):299–304. https://doi.org/10.1016/0025-326X(90)90595-Y.
Marrugo-Negrete J, Pinedo-Hernández J, Marrugo-Madrid S, Navarro-Frómeta E, Díez S (2021) Sea cucumber as bioindicator of trace metal pollution in coastal sediments. Biol Trace Elem Res 199(5):2022–2030. https://doi.org/10.1007/s12011-020-02308-3. (PMID: 10.1007/s12011-020-02308-3)
Martins LR, Barboza EG, Rosa MLCC (2006) Nódulos Polimetálicos e outros Depósitos de Mar Profundo: o Retorno do Interesse. Centro De Estudos De Geologia e Oceânica Porto Alegre N 4:125–131.
Mello SLM, Quental SHAJ (2000) Depósitos de sulfetos metálicos no fundo dos oceanos. Braz J Geophysics 18(3).
Millero FJ (2006a) Minor elements in sea water. Chem Oceanogr 3:99–113.
Millero FJ (2006b) Chemical Oceanography. 623 Primary Production in the 624 Oceans. Third ed, CRC Taylor and Frances Group, Boca Raton, FL, pp 496.
Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW et al (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6(9):701–710. https://doi.org/10.1038/ngeo1765. (PMID: 10.1038/ngeo1765)
Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216. (PMID: 10.1007/s10311-010-0297-8)
Naya DE, Arim M, Vargas R (2002) Diet of South American fur seals (Arctocephalus australis) in Isla de Lobos. Uruguay Mar Mamm Sci 18:734–745. (PMID: 10.1111/j.1748-7692.2002.tb01070.x)
Niencheski LFH (2015) Propriedades químicas da água de mar.g. In: Castello LC, Krug (eds) Introdução às ciências do mar. Editora Textos, Pelotas, pp 140–171.
Okamoto K, Yamamoto Y, Fuwa K (1978) Pepperbush powder, a new standard reference material. Anal Chem 50:1950–1951.
Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J NTR Univ Health Sci 4:75–85. https://doi.org/10.4103/2277-8632.158577. (PMID: 10.4103/2277-8632.158577)
Richon C, Tagliabue A (2019a) Insights into the major processes driving the global distribution of copper in the ocean from a global model. Glob Biogeochem Cycles 33:1594610. https://doi.org/10.1029/2019GB006280. (PMID: 10.1029/2019GB006280)
Richon C, Tagliabue A (2019b) Insights into the major processes driving the global distribution of copper in the ocean from a global model. Glob Biogeochem Cycles 2019(33):1594–1610. https://doi.org/10.1029/2019GB006280. (PMID: 10.1029/2019GB006280)
Rivera-Duarte G, Rosen D, Lapota DB, Chadwick L, Kear-Padilla AZ (2005) Copper toxicity to larval stages of three marine invertebrates and copper complexation capacity in San Diego Bay. Calif Environ Sci Technol 39:1542–1546. (PMID: 10.1021/es040545j)
Rosa C, Blake JE, Bratton GR, Dehn LA, Gray MJ, O’Hara TM (2008) Heavy metal and mineral concentrations and their relationship to histopathological findings in the bowhead whale (Balaena mysticetus). Sci Total Environ 399:165–178. (PMID: 10.1016/j.scitotenv.2008.01.062)
Roshan S, Wu J (2015) The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect. Mar Chem 176:189–198. (PMID: 10.1016/j.marchem.2015.09.006)
Roshan S, Devries T, Wu J (2020) Constraining the global ocean Cu cycle with a data-assimilated diagnostic model. Global Biogeochem Cycles 34:e2020GB006741. https://doi.org/10.1029/2020GB006741. (PMID: 10.1029/2020GB006741)
Sakai H, Saeki K, Ichihashi H, Suganuma H, Tanabe S, Tatsukawa R (2000) Species-specific distribution of heavy metals in tissues and organs of loggerhead turtle (Caretta caretta) and green turtle (Chelonia mydas) from Japanese coastal waters. Mar Pollut Bull 40:701–709.
SEPLAN (2022) Secretaria do Planejamento, Mobilidade e Desenvolvimento. Atlas socioeconômico do Rio Grande do Sul. http://www.atlassocioeconomico.rs.gov.br/conteudo.asp?cod&#95;menu&#95;filho=818&cod&#95;menu=817&tipo&#95;menu=ECONOMIA&cod&#95;conteudo=1468 . Accessed 3 Jan 2022.
Shaw KR, Lynch JM, Balazs GH, Jones TT, Pawloski J, Rice MR et al (2021) Trace element concentrations in blood and scute tissues from wild and captive Hawaiian green sea turtles (Chelonia mydas). Environ Toxicol Chem 40(1):208–18. (PMID: 10.1002/etc.4911)
Silva C, Da C, Klein RD, Barcarolli IF, A. (2016) Bianchini. Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. Aquat Toxicol 170:42–51. https://doi.org/10.1016/j.aquatox.2015.11.007. (PMID: 10.1016/j.aquatox.2015.11.007)
Storelli MM, Ceci E, Marcotrigiano GO (1998) Distribution of heavy metal residues in some tissues of Caretta caretta (Linnaeus) specimens beached along the Adriatic Sea (Italy). Bull Environ Contam Toxicol 60:546–552. (PMID: 10.1007/s001289900660)
Storelli MM, Barone G, Storelli A, Marcotrigiano GO (2008) Total and subcellular distribution of trace elements (Cd, Cu and Zn) in the liver and kidney of green turtles (Chelonia mydas) from the Mediterranean Sea. Chemosphere 70(5):908–913. (PMID: 10.1016/j.chemosphere.2007.06.069)
Tan F, Wang M, Wang W, Aguirre AA, Lu Y (2010) Validation of an in vitro cytotoxicity test for four heavy metals using cell lines derived from a green sea turtle (Chelonia mydas). Cell Biol Toxicol 26:255–263. (PMID: 10.1007/s10565-009-9130-1)
USEPA (1977) United state environmental protection agency. Copper, Office of Research Laboratory and Development U.S. Research Triangle Park, NC, USA.
فهرسة مساهمة: Keywords: Global pollution; Heavy metals; Marine turtle; Pollution; Trace elements; Vertebrates
المشرفين على المادة: 789U1901C5 (Copper)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240420 Date Completed: 20240528 Latest Revision: 20240528
رمز التحديث: 20240528
DOI: 10.1007/s11356-024-33366-y
PMID: 38642227
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-33366-y