دورية أكاديمية

High dimensional proteomic mapping of bone marrow immune characteristics in immune thrombocytopenia.

التفاصيل البيبلوغرافية
العنوان: High dimensional proteomic mapping of bone marrow immune characteristics in immune thrombocytopenia.
المؤلفون: Liu FQ; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Qu QY; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Lei Y; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.; University of Chinese Academy of Sciences, Beijing, 100049, China., Chen Q; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Chen YX; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Li ML; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Sun XY; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Wu YJ; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Huang QS; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Fu HX; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Kong Y; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China., Li YY; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.; University of Chinese Academy of Sciences, Beijing, 100049, China., Wang QF; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.; University of Chinese Academy of Sciences, Beijing, 100049, China., Huang XJ; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China.; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100074, China.; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China., Zhang XH; Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China. zhangxh@bjmu.edu.cn.; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China. zhangxh@bjmu.edu.cn.; National Clinical Research Center for Hematologic Disease, Beijing, 100044, China. zhangxh@bjmu.edu.cn.; Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China. zhangxh@bjmu.edu.cn.
المصدر: Science China. Life sciences [Sci China Life Sci] 2024 Aug; Vol. 67 (8), pp. 1635-1647. Date of Electronic Publication: 2024 Apr 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Science China Press, co-published with Springer Country of Publication: China NLM ID: 101529880 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-1889 (Electronic) Linking ISSN: 16747305 NLM ISO Abbreviation: Sci China Life Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Beijing : Science China Press, co-published with Springer
مواضيع طبية MeSH: Purpura, Thrombocytopenic, Idiopathic*/immunology , Purpura, Thrombocytopenic, Idiopathic*/blood , Bone Marrow*/immunology , Proteomics*/methods, Humans ; Female ; Male ; Adult ; Middle Aged ; Aged ; Young Adult ; Platelet Count
مستخلص: To investigate the role of co-stimulatory and co-inhibitory molecules on immune tolerance in immune thrombocytopenia (ITP), this study mapped the immune cell heterogeneity in the bone marrow of ITP at the single-cell level using Cytometry by Time of Flight (CyTOF). Thirty-six patients with ITP and nine healthy volunteers were enrolled in the study. As soluble immunomodulatory molecules, more sCD25 and sGalectin-9 were detected in ITP patients. On the cell surface, co-stimulatory molecules like ICOS and HVEM were observed to be upregulated in mainly central memory and effector T cells. In contrast, co-inhibitory molecules such as CTLA-4 were significantly reduced in Th1 and Th17 cell subsets. Taking a platelet count of 30×10 9 L -1 as the cutoff value, ITP patients with high and low platelet counts showed different T cell immune profiles. Antigen-presenting cells such as monocytes and B cells may regulate the activation of T cells through CTLA-4/CD86 and HVEM/BTLA interactions, respectively, and participate in the pathogenesis of ITP. In conclusion, the proteomic and soluble molecular profiles brought insight into the interaction and modulation of immune cells in the bone marrow of ITP. They may offer novel targets to develop personalized immunotherapies.
(© 2024. Science China Press.)
References: Abrams, J.R., Lebwohl, M.G., Guzzo, C.A., Jegasothy, B.V., Goldfarb, M.T., Goffe, B.S., Menter, A., Lowe, N.J., Krueger, G., Brown, M.J., et al. (1999). CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 103, 1243–1252. (PMID: 1022596740846910.1172/JCI5857)
Bailly, E., Macedo, C., Ossart, J., Louis, K., Gu, X., Ramaswami, B., Bentlejewski, C., Zeevi, A., Randhawa, P., Lefaucheur, C., et al. (2023). Interleukin-21 promotes type-1 activation and cytotoxicity of CD56 dim CD16 bright natural killer cells during kidney allograft antibody-mediated rejection showing a new link between adaptive and innate humoral allo-immunity. Kidney Int 104, 707–723. (PMID: 3722080510.1016/j.kint.2023.04.024)
Bao, W., Bussel, J.B., Heck, S., He, W., Karpoff, M., Boulad, N., and Yazdanbakhsh, K. (2010). Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents. Blood 116, 4639–4645. (PMID: 20688957299611910.1182/blood-2010-04-281717)
Bauquet, A.T., Jin, H., Paterson, A.M., Mitsdoerffer, M., Ho, I.C., Sharpe, A.H., and Kuchroo, V.K. (2009). The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10, 167–175. (PMID: 1909891910.1038/ni.1690)
Blair, H.A., and Deeks, E.D. (2017). Abatacept: a review in rheumatoid arthritis. Drugs 77, 1221–1233. (PMID: 2860816610.1007/s40265-017-0775-4)
Blair, P.A., Noreña, L.Y., Flores-Borja, F., Rawlings, D.J., Isenberg, D.A., Ehrenstein, M.R., and Mauri, C. (2010). CD19 + CD24 hi CD38 hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140. (PMID: 2007966710.1016/j.immuni.2009.11.009)
Bluestone, J.A., St. Clair, E.W., and Turka, L.A. (2006). CTLA4Ig: bridging the basic immunology with clinical application. Immunity 24, 233–238. (PMID: 1654608910.1016/j.immuni.2006.03.001)
Boggio, E., Gigliotti, C.L., Rossi, D., Toffoletti, E., Cappellano, G., Clemente, N., Puglisi, S., Lunghi, M., Cerri, M., Vianelli, N., et al. (2017). Decreased function of Fas and variations of the perforin gene in adult patients with primary immune thrombocytopenia. Br J Haematol 176, 258–267. (PMID: 2739105510.1111/bjh.14248)
Burlion, A., Brunel, S., Petit, N.Y., Olive, D., and Marodon, G. (2017). Targeting the human T-cell inducible COStimulator molecule with a monoclonal antibody prevents graft-vs-host disease and preserves graft vs leukemia in a xenograft murine model. Front Immunol 8, 756. (PMID: 28713380549154910.3389/fimmu.2017.00756)
Catani, L., Fagioli, M.E., Tazzari, P.L., Ricci, F., Curti, A., Rovito, M., Preda, P., Chirumbolo, G., Amabile, M., Lemoli, R.M., et al. (2006). Dendritic cells of immune thrombocytopenic purpura (ITP) show increased capacity to present apoptotic platelets to T lymphocytes. Exp Hematol 34, 879–887. (PMID: 1679741510.1016/j.exphem.2006.03.009)
Catani, L., Sollazzo, D., Trabanelli, S., Curti, A., Evangelisti, C., Polverelli, N., Palandri, F., Baccarani, M., Vianelli, N., and Lemoli, R.M. (2013). Decreased expression of indoleamine 2,3-dioxygenase 1 in dendritic cells contributes to impaired regulatory T cell development in immune thrombocytopenia. Ann Hematol 92, 67–78. (PMID: 2293646010.1007/s00277-012-1556-5)
Chang, Y., Chen, X., Tian, Y., Gao, X., Liu, Z., Dong, X., Wang, L., He, F., and Zhou, J. (2020). Downregulation of microRNA-155-5p prevents immune thrombocytopenia by promoting macrophage M2 polarization via the SOCS1-dependent PD1/PDL1 pathway. Life Sci 257, 118057. (PMID: 3263442710.1016/j.lfs.2020.118057)
Chen, J., Yang, L., Chang, L., Feng, J., and Liu, J. (2012). The clinical significance of circulating B cells secreting anti-glycoprotein IIb/IIIa antibody and platelet glycoprotein IIb/IIIa in patients with primary immune thrombocytopenia. Hematology 17, 283–290. (PMID: 2297153410.1179/1607845412Y.0000000014)
Cheng, L.E., Amoura, Z., Cheah, B., Hiepe, F., Sullivan, B.A., Zhou, L., Arnold, G.E., Tsuji, W.H., Merrill, J.T., and Chung, J.B. (2018). Brief report: a randomized, double-blind, parallel-group, placebo-controlled, multiple-dose study to evaluate AMG 557 in patients with systemic lupus erythematosus and active lupus arthritis. Arthritis Rheumatol 70, 1071–1076. (PMID: 29513931603294510.1002/art.40479)
Chi, X., Huang, M., Tu, H., Zhang, B., Lin, X., Xu, H., Dong, C., and Hu, X. (2023). Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. Sci China Life Sci 66, 1482–1517. (PMID: 3673843010.1007/s11427-021-2187-3)
Cribbs, A.P., Kennedy, A., Penn, H., Read, J.E., Amjadi, P., Green, P., Syed, K., Manka, S.W., Brennan, F.M., Gregory, B., et al. (2014). Treg cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol 66, 2344–2354. (PMID: 2489128910.1002/art.38715)
del Rio, M.L., Schneider, P., Fernandez-Renedo, C., Perez-Simon, J.A., and Rodriguez-Barbosa, J.I. (2013). LIGHT/HVEM/LTβR interaction as a target for the modulation of the allogeneic immune response in transplantation. Am J Transplant 13, 541–551. (PMID: 2335643810.1111/ajt.12089)
Edner, N.M., Carlesso, G., Rush, J.S., and Walker, L.S.K. (2020a). Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov 19, 860–883. (PMID: 3293907710.1038/s41573-020-0081-9)
Edner, N.M., Heuts, F., Thomas, N., Wang, C.J., Petersone, L., Kenefeck, R., Kogimtzis, A., Ovcinnikovs, V., Ross, E.M., Ntavli, E., et al. (2020b). Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat Immunol 21, 1244–1255. (PMID: 32747817761047610.1038/s41590-020-0744-z)
Emmerich, F., Bal, G., Barakat, A., Milz, J., Mühle, C., Martinez-Gamboa, L., Dörner, T., and Salama, A. (2007). High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura. Br J Haematol 136, 309–314. (PMID: 1715639510.1111/j.1365-2141.2006.06431.x)
Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D., and Anderton, S.M. (2002). B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3, 944–950. (PMID: 1224430710.1038/ni833)
Fu, H., Zhang, X., Xu, L., Liu, K., and Huang, X. (2016). Characterization of thrombopoietin kinetics within 60 days after allogeneic hematopoietic stem cell transplantation and its correlation with megakaryocyte ploidy distribution. Clin Transplant 30, 170–178. (PMID: 2658966910.1111/ctr.12673)
Fu, Z., Qu, W., Shao, Z.H., Wang, H.Q., Xing, L.M., Dong, X.F., Liu, Z.Y., Li, X.N., Zhang, Y., and Ding, S.X. (2022). Expression and significance of PD-1 and ICOS in patients with primary immune thrombocytopenia (in Chinese). J Exp Hematol 30, 1170–1175.
Guo, X., Yasen, H., Zhao, F., Wang, L., Sun, M., Pang, N., Wang, X., Zhang, Y., Ding, J., and Ma, X. (2016). The effect of single course high dose dexamethasone on CD28/CTLA-4 balance in the treatment of patients with newly diagnosed primary immune thrombocytopenia. Hum Vaccines Immunother 12, 97–103. (PMID: 10.1080/21645515.2015.1059975)
Han, P., Yu, T., Hou, Y., Zhao, Y., Liu, Y., Sun, Y., Wang, H., Xu, P., Li, G., Sun, T., et al. (2021). Low-dose decitabine inhibits cytotoxic T lymphocytes-mediated platelet destruction via modulating PD-1 methylation in immune thrombocytopenia. Front Immunol 12, 630693. (PMID: 33679776792584110.3389/fimmu.2021.630693)
Hirose, S., Lin, Q., Ohtsuji, M., Nishimura, H., and Verbeek, J.S. (2019). Monocyte subsets involved in the development of systemic lupus erythematosus and rheumatoid arthritis. Int Immunol 31, 687–696. (PMID: 31063541679494410.1093/intimm/dxz036)
Hu, Y.L., Metz, D.P., Chung, J., Siu, G., and Zhang, M. (2009). B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J Immunol 182, 1421–1428. (PMID: 1915548910.4049/jimmunol.182.3.1421)
Hu, Z., Li, W., Chen, S., Chen, D., Xu, R., Zheng, D., Yang, X., Li, S., Zhou, X., Niu, X., et al. (2023). Design of a novel chimeric peptide via dual blockade of CD47/SIRPα and PD-1/PD-L1 for cancer immunotherapy. Sci China Life Sci 66, 2310–2328. (PMID: 3711549110.1007/s11427-022-2285-6)
Hurchla, M.A., Sedy, J.R., Gavrielli, M., Drake, C.G., Murphy, T.L., and Murphy, K.M. (2005). B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly induced in anergic CD4 + T cells. J Immunol 174, 3377–3385. (PMID: 1574987010.4049/jimmunol.174.6.3377)
Janke, M., Witsch, E.J., Mages, H.W., Hutloff, A., and Kroczek, R.A. (2006). Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology 118, 353–360. (PMID: 16827896178230410.1111/j.1365-2567.2006.02379.x)
Jones, A., Bourque, J., Kuehm, L., Opejin, A., Teague, R.M., Gross, C., and Hawiger, D. (2016). Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity 45, 1066–1077. (PMID: 27793593511213210.1016/j.immuni.2016.10.008)
Kasamatsu, T., Ino, R., Takahashi, N., Gotoh, N., Minato, Y., Takizawa, M., Yokohama, A., Handa, H., Saitoh, T., Tsukamoto, N., et al. (2018). PDCD1 and CTLA4 polymorphisms affect the susceptibility to, and clinical features of, chronic immune thrombocytopenia. Br J Haematol 180, 705–714. (PMID: 2935979210.1111/bjh.15085)
Kenefeck, R., Wang, C.J., Kapadi, T., Wardzinski, L., Attridge, K., Clough, L.E., Heuts, F., Kogimtzis, A., Patel, S., Rosenthal, M., et al. (2015). Follicular helper T cell signature in type 1 diabetes. J Clin Invest 125, 292–303. (PMID: 2548567810.1172/JCI76238)
Khodadi, E., Asnafi, A.A., Shahrabi, S., Shahjahani, M., and Saki, N. (2016). Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol 95, 1765–1776. (PMID: 2723657710.1007/s00277-016-2703-1)
Kuwana, M., Kaburaki, J., and Ikeda, Y. (1998). Autoreactive T cells to platelet GPIIb-IIIa in immune thrombocytopenic purpura. Role in production of anti-platelet autoantibody. J Clin Invest 102, 1393–1402. (PMID: 976933250898710.1172/JCI4238)
Larsen, C.P., Pearson, T.C., Adams, A.B., Tso, P., Shirasugi, N., Strobertb, E., Anderson, D., Cowan, S., Price, K., Naemura, J., et al. (2005). Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 5, 443–453. (PMID: 1570739810.1111/j.1600-6143.2005.00749.x)
Li, D.Y., and Xiong, X.Z. (2020). ICOS + Tregs: a functional subset of tregs in immune diseases. Front Immunol 11, 2104. (PMID: 32983168748533510.3389/fimmu.2020.02104)
Li, W., Bai, Z., Liu, J., Tang, Y., Yin, C., Jin, M., Mu, L., and Li, X. (2023). Mitochondrial ROS-dependent CD4 + PD-1 + T cells are pathological expansion in patients with primary immune thrombocytopenia. Int Immunopharmacol 122, 110597. (PMID: 3741393110.1016/j.intimp.2023.110597)
Li, X., Zhong, H., Bao, W., Boulad, N., Evangelista, J., Haider, M.A., Bussel, J., and Yazdanbakhsh, K. (2012). Defective regulatory B-cell compartment in patients with immune thrombocytopenia. Blood 120, 3318–3325. (PMID: 22859611347654210.1182/blood-2012-05-432575)
Lipsky, P.E., van der Heijde, D.M.F.M., St. Clair, E.W., Furst, D.E., Breedveld, F.C., Kalden, J.R., Smolen, J.S., Weisman, M., Emery, P., Feldmann, M., et al. (2000). Infliximab and methotrexate in the treatment of rheumatoid arthritis. N Engl J Med 343, 1594–1602. (PMID: 1109616610.1056/NEJM200011303432202)
Mittereder, N., Kuta, E., Bhat, G., Dacosta, K., Cheng, L.I., Herbst, R., and Carlesso, G. (2016). Loss of immune tolerance is controlled by ICOS in Sle1 mice. J Immunol 197, 491–503. (PMID: 27296665493217410.4049/jimmunol.1502241)
Montes-Casado, M., Ojeda, G., Aragoneses-Fenoll, L., Lopez, D., de Andres, B., Gaspar, M.L., Dianzani, U., Rojo, J.M., and Portoles, P. (2019). ICOS deficiency hampers the homeostasis, development and function of NK cells. PLoS ONE 14, e0219449. (PMID: 31283790661370810.1371/journal.pone.0219449)
Morodomi, Y., Kanaji, S., Won, E., Ruggeri, Z.M., and Kanaji, T. (2020). Mechanisms of anti-GPIbα antibody-induced thrombocytopenia in mice. Blood 135, 2292–2301. (PMID: 32157300731621810.1182/blood.2019003770)
Moulin, V., Andris, F., Thielemans, K., Maliszewski, C., Urbain, J., and Moser, M. (2000). B lymphocytes regulate dendritic cell (Dc) function in vivo. J Exp Med 192, 475–482. (PMID: 10952717219324110.1084/jem.192.4.475)
Najaoui, A., Bakchoul, T., Stoy, J., Bein, G., Rummel, M.J., Santoso, S., and Sachs, U.J. (2012). Autoantibody-mediated complement activation on platelets is a common finding in patients with immune thrombocytopenic purpura (ITP). Eur J Haematol 88, 167–174. (PMID: 2198518210.1111/j.1600-0609.2011.01718.x)
Oya, Y., Watanabe, N., Kobayashi, Y., Owada, T., Oki, M., Ikeda, K., Suto, A., Kagami, S., Hirose, K., Kishimoto, T., et al. (2011). Lack of B and T lymphocyte attenuator exacerbates autoimmune disorders and induces Fas-independent liver injury in MRL-lpr/lpr mice. Int Immunol 23, 335–344. (PMID: 2152188110.1093/intimm/dxr017)
Patakas, A., Ji, R., Weir, W., Connolly, S.E., Benson, R.A., Nadler, S.G., Brewer, J.M., McInnes, I.B., and Garside, P. (2016). Abatacept inhibition of T cell priming in mice by induction of a unique transcriptional profile that reduces their ability to activate antigen-presenting cells. Arthritis Rheumatol 68, 627–638. (PMID: 2647340910.1002/art.39470)
Pierer, M., Schulz, A., Rossol, M., Kendzia, E., Kyburz, D., Haentzschel, H., Baerwald, C., and Wagner, U. (2009). Herpesvirus entry mediator-Ig treatment during immunization aggravates rheumatoid arthritis in the collagen-induced arthritis model. J Immunol 182, 3139–3145. (PMID: 1923421110.4049/jimmunol.0713715)
Provan, D., and Semple, J.W. (2022). Recent advances in the mechanisms and treatment of immune thrombocytopenia. Ebiomedicine 76, 103820. (PMID: 35074629879241610.1016/j.ebiom.2022.103820)
Rana, A.K., Li, Y., Dang, Q., and Yang, F. (2018). Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 65, 348–359. (PMID: 3036627810.1016/j.intimp.2018.10.016)
Ritthipichai, K., Haymaker, C.L., Martinez, M., Aschenbrenner, A., Yi, X., Zhang, M., Kale, C., Vence, L.M., Roszik, J., Hailemichael, Y., et al. (2017). Multifaceted role of BTLA in the control of CD8+ T-cell fate after antigen encounter. Clin Cancer Res 23, 6151–6164. (PMID: 28754817574815610.1158/1078-0432.CCR-16-1217)
Rodriguez-Barbosa, J.I., Schneider, P., Weigert, A., Lee, K.M., Kim, T.J., Perez-Simon, J.A., and del Rio, M.L. (2019). HVEM, a cosignaling molecular switch, and its interactions with BTLA, CD160 and LIGHT. Cell Mol Immunol 16, 679–682. (PMID: 31160757680489710.1038/s41423-019-0241-1)
Ruperto, N., Lovell, D.J., Berman, A., Ávila-Zapata, F., Horneff, G., Alessio, M., Becker, M.L., Belot, A., Burgos-Vargas, R., Gamir, M.L., et al. (2023). Patient-reported outcomes among patients ages two to seventeen years with polyarticular-course juvenile idiopathic arthritis treated with subcutaneous abatacept: two-year results from an international phase III study. Arthritis Care Res 75, 1804–1814. (PMID: 10.1002/acr.24989)
Saito, A., Yokohama, A., Osaki, Y., Ogawa, Y., Nakahashi, H., Toyama, K., Mitsui, T., Hashimoto, Y., Koiso, H., Uchiumi, H., et al. (2012). Circulating plasmacytoid dendritic cells in patients with primary and Helicobacter pylori-associated immune thrombocytopenia. Eur J Haematol 88, 340–349. (PMID: 2222114310.1111/j.1600-0609.2011.01745.x)
Semple, J.W. (2012). Bregging rights in ITP. Blood 120, 3169. (PMID: 2308662310.1182/blood-2012-08-448522)
Semple, J.W., and Freedman, J. (1991). Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia. Blood 78, 2619–2625. (PMID: 184046810.1182/blood.V78.10.2619.2619)
Semple, J.W., Milev, Y., Cosgrave, D., Mody, M., Hornstein, A., Blanchette, V., and Freedman, J. (1996). Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura: relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood 87, 4245–4254. (PMID: 863978310.1182/blood.V87.10.4245.bloodjournal87104245)
Simpson, N., Gatenby, P.A., Wilson, A., Malik, S., Fulcher, D.A., Tangye, S.G., Manku, H., Vyse, T.J., Roncador, G., Huttley, G.A., et al. (2010). Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum 62, 234–244. (PMID: 2003939510.1002/art.25032)
Stasi, R., Cooper, N., Del Poeta, G., Stipa, E., Laura Evangelista, M., Abruzzese, E., and Amadori, S. (2008). Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 112, 1147–1150. (PMID: 1837579210.1182/blood-2007-12-129262)
Sullivan, B.A., Tsuji, W., Kivitz, A., Peng, J., Arnold, G.E., Boedigheimer, M.J., Chiu, K., Green, C.L., Kaliyaperumal, A., Wang, C., et al. (2016). Inducible T-cell co-stimulator ligand (ICOSL) blockade leads to selective inhibition of anti-KLH IgG responses in subjects with systemic lupus erythematosus. Lupus Sci Med 3, e000146. (PMID: 27099766483628410.1136/lupus-2016-000146)
Tang, S.Q., Xing, T., Lyu, Z.S., Guo, L.P., Liang, M., Li, C.Y., Zhang, Y.Y., Wang, Y., Xu, L.P., Zhang, X.H., et al. (2023). Repair of dysfunctional bone marrow endothelial cells alleviates aplastic anemia. Sci China Life Sci 66, 2553–2570. (PMID: 3728932710.1007/s11427-022-2310-x)
Taylor, D.K., Mittereder, N., Kuta, E., Delaney, T., Burwell, T., Dacosta, K., Zhao, W., Cheng, L.I., Brown, C., Boutrin, A., et al. (2018). T follicular helper-like cells contribute to skin fibrosis. Sci Transl Med 10, eaaf5307. (PMID: 2951499810.1126/scitranslmed.aaf5307)
van der Heide, V., and Homann, D. (2016). CD28 days later: Resurrecting costimulation for CD8 + memory T cells. Eur J Immunol 46, 1587–1591. (PMID: 27401871520376610.1002/eji.201646500)
Vegting, Y., Vogt, L., Anders, H.J., de Winther, M.P.J., Bemelman, F.J., and Hilhorst, M.L. (2021). Monocytes and macrophages in ANCA-associated vasculitis. Autoimmun Rev 20, 102911. (PMID: 3429815310.1016/j.autrev.2021.102911)
Wang, H., Zhu, Z., Zhang, Y., Jiang, T., Zhang, M., Wang, Z., Zhang, Y., Zhao, A., and Su, B. (2023). New insight into immune checkpoint inhibitors in the treatment of advanced renal cell carcinoma. Sci China Life Sci 66, 875–878. (PMID: 3646921710.1007/s11427-022-2197-7)
Wang, J., Shan, Y., Jiang, Z., Feng, J., Li, C., Ma, L., and Jiang, Y. (2013). High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Exp Immunol 174, 212–220. (PMID: 23786438382882410.1111/cei.12162)
Wang, Q., Li, J., Yu, T., Liu, Y., Li, K., Liu, S., Liu, Y., Feng, Q., Zhang, L., Li, G., et al. (2019). Disrupted balance of CD4 + T-cell subsets in bone marrow of patients with primary immune thrombocytopenia. Int J Biol Sci 15, 2798–2814. (PMID: 31853219690996310.7150/ijbs.33779)
Wassink, L., Vieira, P.L., Smits, H.H., Kingsbury, G.A., Coyle, A.J., Kapsenberg, M.L., and Wierenga, E.A. (2004). ICOS expression by activated human Th Cells is enhanced by IL-12 and IL-23: increased ICOS expression enhances the effector function of both Th1 and Th2 cells. J Immunol 173, 1779–1786. (PMID: 1526590810.4049/jimmunol.173.3.1779)
Watanabe, N., Gavrieli, M., Sedy, J.R., Yang, J., Fallarino, F., Loftin, S.K., Hurchla, M. A., Zimmerman, N., Sim, J., Zang, X., et al. (2003). BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4, 670–679. (PMID: 1279677610.1038/ni944)
Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., and Sakaguchi, S. (2008). CTLA-4 control over Foxp3 + regulatory T cell function. Science 322, 271–275. (PMID: 1884575810.1126/science.1160062)
Wojciechowicz, K., Spodzieja, M., Lisowska, K.A., and Wardowska, A. (2022). The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol 376, 104532. (PMID: 3553732210.1016/j.cellimm.2022.104532)
Wong, K.L., Tai, J.J.Y., Wong, W.C., Han, H., Sem, X., Yeap, W.H., Kourilsky, P., and Wong, S.C. (2011). Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16–e31. (PMID: 2165332610.1182/blood-2010-12-326355)
Xu, L., Fu, H., Zhang, J., Feng, F., Wang, Q., Zhu, X., Xue, J., Wang, C., Chen, Q., Liu, X., et al. (2017). Impaired function of bone marrow mesenchymal stem cells from immune thrombocytopenia patients in inducing regulatory dendritic cell differentiation through the Notch-1/Jagged-1 signaling pathway. Stem Cells Dev 26, 1648–1661. (PMID: 2894681110.1089/scd.2017.0078)
Yang, B., Huang, Z., Feng, W., Wei, W., Zhang, J., Liao, Y., Li, L., Liu, X., Wu, Z., Cai, B., et al. (2016). The expression of LIGHT was increased and the expression of HVEM and BTLA were decreased in the T cells of patients with rheumatoid arthritis. PLoS ONE 11, e0155345. (PMID: 27183113486834510.1371/journal.pone.0155345)
Yoshinaga, S.K., Whoriskey, J.S., Khare, S.D., Sarmiento, U., Guo, J., Horan, T., Shih, G., Zhang, M., Coccia, M.A., Kohno, T., et al. (1999). T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832. (PMID: 1061720510.1038/45582)
Zhang, Q., and Vignali, D.A.A. (2016). Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44, 1034–1051. (PMID: 27192568487395910.1016/j.immuni.2016.04.017)
Zhang, X., Wang, Y., Zhang, D., Li, H., Zhou, Z., and Yang, R. (2020). CD70-silenced dendritic cells induce immune tolerance in immune thrombocytopenia patients. Br J Haematol 191, 466–475. (PMID: 3241921110.1111/bjh.16689)
Zhao, H., Ma, Y., Li, D., Sun, T., Li, L., Li, P., Liu, X., Zhou, H., Hou, Y., Liu, Y., et al. (2019a). Low-dose chidamide restores immune tolerance in ITP in mice and humans. Blood 133, 730–742. (PMID: 3055209710.1182/blood-2018-05-847624)
Zhao, P., Wang, P., Dong, S., Zhou, Z., Cao, Y., Yagita, H., He, X., Zheng, S.G., Fisher, S.J., Fujinami, R.S., et al. (2019b). Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng 3, 292–305. (PMID: 30952980645290610.1038/s41551-019-0360-0)
Zhong, H., Bao, W., Li, X., Miller, A., Seery, C., Haq, N., Bussel, J., and Yazdanbakhsh, K. (2012). CD16 + monocytes control T-cell subset development in immune thrombocytopenia. Blood 120, 3326–3335. (PMID: 22915651347654310.1182/blood-2012-06-434605)
Zhou, Z.H., Zhuang, L., Li, X.Y., Li, J., and Luo, S.K. (2010). The role of B cell-activating factor secreted by peripheral blood monocyte-derived dendritic cell in chronic idiopathic thrombocytopenic purpura (in Chinese). Chin J Hematol 31, 599–602.
Zhu, F., Qiao, J., Cao, J., Sun, H., Wu, Q., Sun, Z., Zhao, K., Sang, W., Qi, K., Zeng, L., et al. (2015). Decreased level of cytotoxic T lymphocyte antigen-4 (CTLA-4) in patients with acute immune thrombocytopenia (ITP). Thromb Res 136, 797–802. (PMID: 2627230310.1016/j.thromres.2015.07.017)
فهرسة مساهمة: Keywords: CTLA4; Cytometry by Time of Flight; autoimmune diseases; bone marrow; co-inhibitory; co-stimulatory; immune checkpoint; immune thrombocytopenia
تواريخ الأحداث: Date Created: 20240421 Date Completed: 20240807 Latest Revision: 20240807
رمز التحديث: 20240808
DOI: 10.1007/s11427-023-2520-4
PMID: 38644444
قاعدة البيانات: MEDLINE
الوصف
تدمد:1869-1889
DOI:10.1007/s11427-023-2520-4