دورية أكاديمية

Body size mediates trophic interaction strength of novel fish assemblages under climate change.

التفاصيل البيبلوغرافية
العنوان: Body size mediates trophic interaction strength of novel fish assemblages under climate change.
المؤلفون: Sasaki M; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia., Kingsbury KM; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia., Booth DJ; Fish Ecology Lab, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia., Nagelkerken I; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
المصدر: The Journal of animal ecology [J Anim Ecol] 2024 Jun; Vol. 93 (6), pp. 705-714. Date of Electronic Publication: 2024 Apr 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell
Original Publication: Oxford, British Ecological Society.
مواضيع طبية MeSH: Fishes*/physiology , Body Size* , Climate Change* , Food Chain*, Animals ; Diet/veterinary ; Gastrointestinal Contents ; Australia
مستخلص: Ecological similarity plays an important role in biotic interactions. Increased body size similarity of competing species, for example, increases the strength of their biotic interactions. Body sizes of many exothermic species are forecast to be altered under global warming, mediating shifts in existing trophic interactions among species, in particular for species with different thermal niches. Temperate rocky reefs along the southeast coast of Australia are located in a climate warming hotspot and now house a mixture of temperate native fish species and poleward range-extending tropical fishes (vagrants), creating novel species assemblages. Here, we studied the relationship between body size similarity and trophic overlap between individual temperate native and tropical vagrant fishes. Dietary niche overlap between vagrant and native fish species increased as their body sizes converged, based on both stomach content composition (short-term diet), stable isotope analyses (integrated long-term diet) and similarity in consumed prey sizes. We conclude that the warming-induced faster growth rates of tropical range-extending fish species at their cool water ranges will continue to converge their body size towards and strengthen their degree of trophic interactions and dietary overlap with co-occurring native temperate species under increasing ocean warming. The strengthening of these novel competitive interactions is likely to drive changes to temperate food web structures and reshuffle existing species community structures.
(© 2024 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.)
References: Aas, T. S., Sixten, H. J., Hillestad, M., Sveier, H., Ytrestøyl, T., Hatlen, B., & Åsgård, T. (2017). Measurement of gastrointestinal passage rate in Atlantic salmon (Salmo salar) fed dry or soaked feed. Aquaculture Reports, 8, 49–57. https://doi.org/10.1016/j.aqrep.2017.10.001.
Alexander, J. M., Diez, J. M., & Levine, J. M. (2015). Novel competitors shape species' responses to climate change. Nature, 525, 515–518. https://doi.org/10.1038/nature14952.
Allain, V., & Leroy, B. (2006). Ecosystem monitoring and analysis: Stomach sampling overview of the GEF‐SAP project 2000–2005 and stomach sampling strategy of the GEF‐OFM project 2005–2010. Oceanic Fisheries Program, Secretariat of the Pacific Community.
Altieri, A. H., & Irving, A. D. (2017). Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat. PeerJ, 5, e2848. https://doi.org/10.7717/peerj.2848.
Arrontes, J. (2002). Mechanisms of range expansion in the intertidal brown alga Fucus serratus in northern Spain. Marine Biology, 141, 1059–1067. https://doi.org/10.1007/s00227‐002‐0910‐x.
Azzurro, E., Fanelli, E., Mostarda, E., Catra, M., & Andaloro, F. (2007). Resource partitioning among early colonizing Siganus luridus and native herbivorous fish in the Mediterranean: An integrated study based on gut‐content analysis and stable isotope signatures. Journal of the Marine Biological Association of the UK, 87, 991–998. https://doi.org/10.1017/S0025315407056342.
Barneche, D. R., Anderson, A. B., Floeter, S. R., Silveira, M., Dinslaken, D. F., & Carvalho‐Filho, A. (2009). Ten new records of reef fish on the coast of Santa Catarina state, Brazil. Marine Biodiversity Records, 2, e143. https://doi.org/10.1017/S1755267209990613.
Bonsall, M. B., Jansen, V. A. A., & Hassell, M. P. (2004). Life history trade‐offs assemble ecological guilds. Science, 306(5693), 111–114. https://doi.org/10.1126/science.1100680.
Booth, J. B., Beretta, G. A., Brown, L., & Figueira, W. F. (2018). Predicting success of range‐expanding coral reef fish in temperate habitats using temperature‐abundance relationships. Frontiers in Marine Science, 5, 31. https://doi.org/10.3389/fmars.2018.0003.
Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400. https://doi.org/10.32614/RJ‐2017‐066.
Busst, G. M. A., & Britton, J. R. (2018). Tissue‐specific turnover rates of the nitrogen stable isotope as functions of time and growth in a cyprinid fish. Hydrobiologia, 805, 49–60. https://doi.org/10.1007/s10750‐017‐3276‐2.
Catano, L. B., Rojas, M. C., Malossi, R. J., Peters, J. R., Heithaus, M. R., Fourqurean, J. W., & Burkepile, D. E. (2015). Reefscapes of fear: Predation risk and reef heterogeneity interact to shape behaviour foraging behaviour. The Journal of Animal Ecology, 85(1), 146–156. https://doi.org/10.1111/1365‐2656.12440.
Coni, E. O. C., Booth, D. J., Ferreira, C. M., & Nagelkerken, I. (2021). Behavioural generalism could facilitate coexistence of tropical and temperate fishes under climate change. The Journal of Animal Ecology, 91(1), 86–100. https://doi.org/10.1111/1365‐2656.13599.
Coni, E. O. C., Booth, D. J., & Nagelkerken, I. (2021). Novel species interactions and environmental conditions reduce foraging competency at the temperate range edge of a range‐extending coral reef fish. Coral Reefs, 40, 1525–1536. https://doi.org/10.1007/s00338‐021‐02150‐6.
Daniels, R. A., & Lipss, J. H. (1978). Predation on foraminifera by Antarctic fish. Journal of Foraminiferal Research, 8(2), 110–113. https://doi.org/10.2113/gsjfr.8.2.110.
Djurichkovic, L. D., Donelson, J. M., Fowler, A. M., Feary, D. A., & Booth, D. J. (2019). The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs. Scientific Reports, 9, 13937. https://doi.org/10.1038/s41598‐019‐50303‐z.
Donelson, J. M., Sunday, J. M., Figueira, W. F., Gaitán‐Espitia, J. D., Hobday, A. J., Johnson, C. R., Leis, J. M., Ling, S. D., Marshall, D., Pandolfi, J. M., Pecl, G., Rodgers, G. G., Booth, D. J., & Munday, P. L. (2019). Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philosophical Transactions of the Royal Society B, 374, 20180186. https://doi.org/10.1098/rstb.2018.0186.
Dunic, J. C., & Baum, J. K. (2017). Size structuring and allometric scaling relationships in coral reef fishes. The Journal of Animal Ecology, 86, 577–589. https://doi.org/10.1111/1365‐2656.12637.
Epstein, G., Hawkins, S. J., & Smale, D. A. (2019). Identifying niche and fitness dissimilative in invaded marine macroalgal canopies within the context of contemporary coexistence theory. Scientific Reports, 9, 8816. https://doi.org/10.1038/s41598‐019‐45388‐5.
Feary, D. A., Pratchett, M. S., Emslie, M. J., Fowler, A. M., Figueira, W. F., Luiz, O. J., Nakamura, Y., & Booth, D. J. (2013). Latitudinal shifts in coral reef fishes: Why some species do and other do not shift. Fish and Fisheries, 15(4), 593–615. https://doi.org/10.1111/faf.12036.
Figueira, W. F., Biro, P., Booth, D. J., & Valenzuela, V. C. (2009). Performance of tropical fish recruiting to temperate habitats: Role of ambient temperature and implications of climate change. Marine Ecology Progress Series, 384, 231–239. https://doi.org/10.3354/meps08057.
Fodrie, F. J., Heck, K. L., Jr., Powers, S. P., Graham, W. M., & Robinson, K. L. (2010). Climate‐related, decadal‐scale assemblage changes of seagrass‐associated fishes in the northern Gulf of Mexico. Global Change Biology, 16, 48–59. https://doi.org/10.1111/j.1365‐2486.2009.01889.x.
Fossum, P. (1983). Digestion rate of food particles in the gut of larval herring (Clupea harengus L.). FiskDir, Skr, Ser, HawUnders, 17, 347–357.
Garcia, A. F. S., Garcia, A. M., Vollrath, S. R., Schneck, F., Silva, C. F. M., Marchetti, Í. J., & Vieira, J. P. (2018). Spatial diet overlap and food resource in two congeneric mullet species revealed by stable isotopes and stomach content analyses. Community Ecology, 19(2), 116–124. https://doi.org/10.1556/168.2018.19.2.3.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology & Evolution, 26(6), 285–291. https://doi.org/10.1016/j.tree.2011.03.005.
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293(5538), 2248–2251. https://doi.org/10.1126/science.1061967.
González‐Cuéllar, O. T., Reyes‐Bonilla, H., Fourriére, M., Rojo, M., Hernández‐Valesco, A., & Sanchez‐Alcantara, I. (2013). Range extensions of four species of parrotfishes (Scaridae) in the northern Gulf of California, Mexico. Cybium, 37(3), 223–226.
Hartig, F. (2022). DHARMa: Residual diagnostics for hierarchical (multi‐level/mixed) regression models. R package version 0.4.6. https://CRAN.R‐project.org/package=DHARMa.
Heg, D., Bachar, Z., & Taborsky, M. (2005). Cooperative breeding and group structure in the Lake Tanganyika cichlid Neolamprologus savoryi. Ethology, 111, 1017–1043. https://doi.org/10.1111/j.1439‐0310.2005.01135.x.
Heng, K., Chevalier, M., Lek, S., & Laffaille, P. (2019). Seasonal variations in diet composition, diet breadth and dietary overlap between three commercially important fish species within a flood‐pulse system: The Tonle Sap Lake (Cambodia). PLoS ONE, 13(6), e0198848. https://doi.org/10.1371/journal.pone.0198848.
Hobday, A. J., & Pecl, G. T. (2014). Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries, 24, 415–425. https://doi.org/10.1007/s11160‐013‐9326‐6.
Hochachka, P. W., & Somero, G. N. (2002). Biochemical adaptation. Oxford University Press.
Horswill, C., Trathan, P. N., & Ratcliffe, N. (2017). Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin. PLoS ONE, 12(9), e0184114. https://doi.org/10.1371/journal.pone.0184114.
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 332–341.
Jackson, A., & Parnell, A. (2023). SIBER: Stable isotope Bayesian ellipses in R. R package version 2.1.9. https://CRAN.R‐project.org/package=SIBER.
Keddy, P. A. (1992). Assembly and response rules: Two goals for predictive community ecology. Journal of Vegetation Science, 3(2), 157–164. https://doi.org/10.2307/3235676.
Keppeler, F. W., & Winemiller, K. O. (2020). Can ancestry and morphology be used as surrogated for species niche relationship? Ecology and Evolution, 10(13), 6562–6578. https://doi.org/10.1002/ece3.6390.
Kingsbury, K. M., Gillanders, B. M., Booth, D. J., Coni, E. O. C., & Negelkerken, I. (2019). Range‐extending coral reef fishes trade‐off growth for maintenance of body condition in cooler waters. Science of the Total Environment, 703, 134598. https://doi.org/10.1016/j.scitotenv.2019.134598.
Kingsbury, K. M., Gillanders, B. M., Booth, D. J., & Nagelkerken, I. (2019). Trophic niche segregation allows range‐extending coral reef fishes to co‐exist with temperate species under climate change. Global Change Biology, 26(2), 721–733. https://doi.org/10.1111/gcb.14898.
Kondo, T. (1986). Feeding habits of Lamprologus savoryi (Teleostei: Cichilidae) with reference to its social behaviour. Physiology and Ecology Japan, 23(1), 1–15.
Kuwamura, T. (1984). Social structure of the protogynous fish Labroides dimidiatus. Publications of the Seto Marine Biological Laboratory, 29, 117–177.
Labropoulou, M., & Eleftheriou, A. (2005). The foraging ecology of two pairs of congeneric demersal fish species: Importance of morphological characteristics in prey selection. Journal of Fish Biology, 50(2), 324–340. https://doi.org/10.1111/j.1095‐8649.1997.tb01361.x.
Lancaster, L. T., Morrison, G., & Fitt, R. N. (2017). Life history trade‐offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philosophical Transactions of the Royal Society, 372(1712), 20160046. https://doi.org/10.1098/rstb.2016.0046.
Layman, C. A., Winemiller, K. O., & Arrington, D. A. (2005). Describing the structure and function of a Neotropical river food web using stable isotopes, stomach contents, and functional experiment. In P. C. de Ruiter, V. Wolter, & J. C. Moore (Eds.), Dynamic food webs: Multispecies assemblages, ecosystems development and environmental change (pp. 395–406). Elsevier.
Luiz‐Júnior, O. J., Floeter, S. R., Gasparini, J. L., Ferreira, C. E. L., & Wirtz, P. (2004). The occurrence of Acanthurus monroviae (Perciformes: Acanthuridae) in the south‐western Atlantic, with comments on other eastern Atlantic reef fishes occurring in Brazil. Journal of Fish Biology, 65(4), 1173–1179. https://doi.org/10.1111/j.0022‐1112.2004.00519.x.
Mittelbach, G. G., & Persson, L. (1998). The ontogeny of piscivory and its ecological consequences. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1454–1465. https://doi.org/10.1139/f98‐04.
Nakamura, Y., Feary, D. A., Kanda, M., & Yamaoka, K. (2013). Tropical fishes dominate temperate reef fish communities within Western Japan. PLoS ONE, 8(12), e81107. https://doi.org/10.1371/journal.pone.0081107.
Nash, K. L., Graham, N. A. J., Januchowski‐Hartley, F. A., & Bellwood, D. R. (2012). Influence of habitat condition and competition on foraging behaviour of parrotfishes. Marine Ecology Progress Series, 457, 113–124. https://doi.org/10.3354/meps09742.
Nishida, T., Nakazono, A., Onikura, N., Oikawa, S., & Matsui, S. (2007). Seasonal dynamics of fish fauna on the reef in the Tsushima current, northern Kyushu, Japan. Journal of Ichthyology, 54(1), 65–78. https://doi.org/10.11369/jji1950.54.65.
Ogloff, W. R., Yurkowski, D. J., Davoren, G. K., & Ferguson, S. H. (2019). Diet and isotopic niche overlap elucidate competition potential between seasonally sympatric phocids in the Canadian Arctic. Marine Biology, 166, 103. https://doi.org/10.1007/s00227‐019‐3549‐6.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J. (2022). vegan: Community ecology package. R package version 2.6‐4. https://CRAN.R‐project.org/package=vegan.
Parkyn, S. M., Collier, K. J., & Hicks, B. J. (2001). New Zealand stream crayfish: Functional omnivores but trophic predators? Freshwater Biology, 46(5), 641–652. https://doi.org/10.1046/j.1365‐2427.2001.00702.x.
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. A., & Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3, 919–925. https://doi.org/10.1038/nclimate1958.
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/.
Ramírez, F., Davenport, T. L., & Mojica, J. I. (2015). Dietary‐morphological relationships of nineteen fish species from an Amazonian Terra firme blackwater stream in Colombia. Limnologica, 52, 89–102. https://doi.org/10.1016/j.limno.2015.04.002.
Raymond, W. W., Albins, M. A., & Pusack, T. J. (2015). Competitive interactions for shelter between invasive Pacific red lionfish and native Nassau grouper. Environmental Biology of Fishes, 98, 57–65. https://doi.org/10.1007/s10641‐014‐0236‐9.
Russo, T., Pulcini, D., O'Leary, Á., Cataudella, S., & Mariani, S. (2008). Relationship between body shape and trophic niche segregation in two closely related sympatric fishes. Journal of Fish Biology, 73(4), 809–828. https://doi.org/10.1111/j.1095‐8649.2008.01964.x.
Sánchez‐Hernández, J., Hayden, B., Harrod, C., & Kahilainen, K. K. (2021). Population niche breadth and individual trophic specialisation of fish along a climate‐productivity gradient. Reviews in Fish Biology and Fisheries, 31, 1025–1043. https://doi.org/10.1007/s11160‐021‐09687‐3.
Sasaki, M., Kingsbury, K., Booth, D., & Nagelkerken, I. (2024). Data from: Body size mediates trophic interaction strength of novel fish assemblages under climate change [Dataset]. Dryad Digital Repository. https://doi.org/10.5061/dryad.w9ghx3fx8.
Sasaki, M., Mitchell, A., Booth, D. J., & Nagelkerken, I. (2024). Novel ecological interactions alter physiological responses of range‐extending tropical and local temperate fishes under ocean warming. Science of the Total Environment, 913, 169413. https://doi.org/10.1016/j.scitotenv.2023.169413.
Smith, S. M., Fox, R. J., Booth, D. J., & Donelson, J. M. (2018). ‘Stick with your own kind, or hand with the locals?’ Implications of shoaling strategy for tropical reef fish on a range‐expansion frontline. Global Change Biology, 24(4), 1663–1672. https://doi.org/10.1111/gcb.14016.
Tseitlin, V. B. (1980). Duration of gastric digestion in fishes. Marine Ecology Progress, 2(4), 277–280.
Van Noordwijk, A. J., & De Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history tactics. The American Naturalist, 128(1), 137–142.
Vander Zanden, M. J., Casselman, J. M., & Rasmussen, J. B. (1999). Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401, 464–467.
Verde Arregoitia, L. D., Fisher, D. O., & Schweizer, M. (2017). Morphology captures diet and locomotor types in rodents. Royal Society Open Science, 4, 160957. https://doi.org/10.1098/rsos.160957.
Vergés, A., Steinberg, P. D., Hay, M. E., Poore, A. G., Campbell, A. H., Ballesteros, E., Heck, K. L., Jr., Booth, D. J., Coleman, M. A., Feary, D. A., Figueira, W., Langlois, T., Marzinelli, E. M., Mizerek, T., Mumby, P. J., Nakamura, Y., Roughan, M., van Sebille, E., Gupta, A. S., … Wilson, S. K. (2014). The tropicalization of temperate marine ecosystems: Climate‐mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences, 281, 20140846. https://doi.org/10.1098/rspb.2014.0846.
Vollrath, S. R., Possamai, B., Schneck, F., Hoeinghaus, D. J., Albertoni, E. F., & Garcia, A. M. (2021). Trophic niches and diet shifts of juvenile mullet species coexisting in marine and estuarine habitats. Journal of the Marine Biological Association, 101(2), 431–441. https://doi.org/10.1017/S0025315421000242.
Waraniak, J. M., Marsh, T. L., & Scribner, K. T. (2019). 18S rRNA metabarcoding diet analysis of a predatory fish community across seasonal changes in prey availability. Ecology and Evolution, 9(3), 1410–1430. https://doi.org/10.1002/ece3.4857.
Weidel, B. C., Carpenter, S. R., Kitchell, J. F., & Vander Zanden, M. J. (2011). Rates and components of carbon turnover in fish muscle: Insights from bioenergetics models and a whole‐lake 13C addition. Canadian Journal of Fisheries and Aquatic Sciences, 68(3), 387–399. https://doi.org/10.1139/F10‐158.
Werner, E. E. (1986). Species interactions in freshwater fish communities. In J. Diamond & T. J. Case (Eds.), Community ecology (pp. 344–358). Harper and Row.
Werner, E. E., & Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size‐structured populations. Annual Review of Ecology, Evolution, and Systematics, 15, 393–425. https://doi.org/10.1146/annurev.es.15.110184.002141.
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Jonathan Davies, T., Grytnes, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310–1324. https://doi.org/10.1111/j.1461‐0248.2010.01515.x.
Winter, E. R., Nolan, E. T., Busst, G. M. A., & Britton, J. R. (2019). Estimating stable isotope turnover rates of epidermal mucus and dorsal muscle for an omnivorous fish suing a diet‐switch experiment. Hydrobiologia, 828, 245–258. https://doi.org/10.1007/s10750‐018‐3816‐4.
Woodward, G., & Hildrew, A. G. (2002). Body‐size determinants of niche overlap and intraguild predation within a complex food web. The Journal of Animal Ecology, 71(6), 1062–1074. https://doi.org/10.1046/j.1365‐2656.2002.00669.x.
Young, T., Pincin, J., Neubauer, P., Ortega‐García, S., & Jensen, O. P. (2018). Investigating diet patterns of highly mobile marine predators using stomach contents, stable isotope, and fatty acid analyses. ICES Journal of Marine Science, 75(5), 1583–1590. https://doi.org/10.1093/icesjms/fsy025.
معلومات مُعتمدة: Discovery Projects DP170101722 Australian Research Council
فهرسة مساهمة: Keywords: body size; competitive interactions; ecological niche; global warming; range shifts; stable isotopes; stomach content; trait similarity
تواريخ الأحداث: Date Created: 20240422 Date Completed: 20240607 Latest Revision: 20240607
رمز التحديث: 20240607
DOI: 10.1111/1365-2656.14079
PMID: 38644583
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2656
DOI:10.1111/1365-2656.14079