دورية أكاديمية

The critical role of residues Phe120 and Val161 of (2 R,3 R)‑2,3‑butanediol dehydrogenase from Neisseria gonorrhoeae as probed by molecular docking and site-directed mutagenesis.

التفاصيل البيبلوغرافية
العنوان: The critical role of residues Phe120 and Val161 of (2 R,3 R)‑2,3‑butanediol dehydrogenase from Neisseria gonorrhoeae as probed by molecular docking and site-directed mutagenesis.
المؤلفون: Dong X; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China., Zhang T; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China., Gui C; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China., Fei S; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China., Xu H; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China., Chang J; Scientific Research Center, Bengbu Medical University, Bengbu, China., Lian C; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China.; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China., Tang W; Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China.; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, China.
المصدر: Journal of basic microbiology [J Basic Microbiol] 2024 Jun; Vol. 64 (6), pp. e2300751. Date of Electronic Publication: 2024 Apr 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 8503885 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4028 (Electronic) Linking ISSN: 0233111X NLM ISO Abbreviation: J Basic Microbiol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim, Germany : Wiley-VCH Verlag
Original Publication: Berlin : Akademie-Verlag, [1985-
مواضيع طبية MeSH: Molecular Docking Simulation* , Neisseria gonorrhoeae*/enzymology , Neisseria gonorrhoeae*/genetics , Neisseria gonorrhoeae*/metabolism , Mutagenesis, Site-Directed* , Alcohol Oxidoreductases*/genetics , Alcohol Oxidoreductases*/metabolism , Alcohol Oxidoreductases*/chemistry , Butylene Glycols*/metabolism , Phenylalanine*/metabolism , Phenylalanine*/genetics, Kinetics ; Binding Sites ; Substrate Specificity ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Bacterial Proteins/chemistry ; Valine/metabolism ; Valine/genetics ; Catalytic Domain ; Hydrophobic and Hydrophilic Interactions
مستخلص: NAD + -dependent (2 R,3 R)‑2,3‑butanediol dehydrogenase (BDH) from Neisseria gonorrhoeae (NgBDH) is a representative member of the medium-chain dehydrogenase/reductase (MDR) superfamily. To date, little information is available on the substrate binding sites and catalytic residues of BDHs from this superfamily. In this work, according to molecular docking studies, we found that conserved residues Phe120 and Val161 form strong hydrophobic interactions with both (2 R,3 R)‑2,3‑butanediol (RR-BD) and meso-2,3‑butanediol (meso-BD) and that mutations of these residues to alanine or threonine impair substrate binding. To further evaluate the roles of these two residues, Phe120 and Val161 were mutated to alanine or threonine. Kinetic analysis revealed that, relative to those of wild type, the apparent K M values of the Phe120Ala mutant for RR-BD and meso-BD increased 36- and 369-fold, respectively; the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 586- and 3528-fold, respectively; and the apparent K M values of the Val161Ala mutant for RR-BD and meso-BD increased 4- and 37-fold, respectively, the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 3- and 28-fold, respectively. Additionally, the Val161Thr mutant slightly decreased catalytic efficiencies (twofold with RR-BD; 7.3-fold with meso-BD) due to an increase in K M (sixfold for RR-BD; 24-fold for meso-BD) and a slight increase (2.8-fold with RR-BD; 3.3-fold with meso-BD) in k cat . These findings validate the critical roles of Phe120 and Val161 of NgBDH in substrate binding and catalysis. Overall, the current study provides a better understanding of the substrate binding and catalysis of BDHs within the MDR superfamily.
(© 2024 Wiley‐VCH GmbH.)
References: Raedts J, Siemerink MAJ, Levisson M, van der Oost J, Kengen SWM. Molecular characterization of an NADPH‐dependent acetoin reductase/2,3‐butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol. 2014;80:2011–2020.
Hu BC, Li MR, Li YY, Yuan XS, Hu YY, Xiao FG. Engineering a BsBDHA substrate‐binding pocket entrance for the improvement in catalytic performance toward (R)‐phenyl‐1,2‐ethanediol based on the computer‐aided design. Biochem Eng J. 2023;194:108907.
Tang W, Lian C, Si Y, Chang J. Purification and characterization of (2R,3R)‐2,3‐butanediol dehydrogenase of the human pathogen Neisseria gonorrhoeae FA1090 produced in Escherichia coli. Mol Biotechnol. 2021;63:491–501.
Yu M, Huang M, Song Q, Shao J, Ying X. Characterization of a (2R,3R)‐2,3‐butanediol dehydrogenase from Rhodococcus erythropolis WZ010. Molecules. 2015;20:7156–7173.
Otagiri M, Ui S, Takusagawa Y, Ohtsuki T, Kurisu G, Kusunoki M. Structural basis for chiral substrate recognition by two 2,3‐butanediol dehydrogenases. FEBS Lett. 2010;584:219–223.
Persson B, Hedlund J, Jörnvall H. Medium‐ and short‐chain dehydrogenase/reductase gene and protein families: the MDR superfamily. Cell Mol Life Sci. 2008;65:3879–3894.
Yu B, Sun J, Bommareddy RR, Song L, Zeng AP. Novel (2R,3R)‐2,3‐butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl Environ Microbiol. 2011;77:4230–4233.
Tang W, Wu M, Qin N, Liu L, Meng R, Wang C, et al. Crystal structures of NAD+‐linked isocitrate dehydrogenase from the green alga Ostreococcus tauri and its evolutionary relationship with eukaryotic NADP+‐linked homologs. Arch Biochem Biophys. 2021;708:108898.
Tang W, Dong X, Meng J, Feng Y, Xie M, Xu H, et al. Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD+‐dependent homoserine dehydrogenase from the human pathogen Neisseria gonorrhoeae. Protein Expr Purif. 2021;186:105909.
González‐Segura L, Riveros‐Rosas H, Julián‐Sánchez A, Muñoz‐Clares RA. Residues that influence coenzyme preference in the aldehyde dehydrogenases. Chem‐Biol Interact. 2015;234:59–74.
Otagiri M, Kurisu G, Ui S, Takusagawa Y, Ohkuma M, Kudo T, et al. Crystal Structure of meso‐2,3‐Butanediol dehydrogenase in a complex with nad+ and inhibitor mercaptoethanol at 1.7 a resolution for understanding of chiral substrate recognition mechanisms. J Biochem. 2001;129:205–208.
Subramanian V, Lunin VV, Farmer SJ, Alahuhta M, Moore KT, Ho A, et al. Phylogenetics‐based identification and characterization of a superior 2,3‐butanediol dehydrogenase for Zymomonas mobilis expression. Biotechnol Biofuels. 2020;13:186.
Ehsani M, Fernández MR, Biosca JA, Dequin S. Reversal of coenzyme specificity of 2,3‐butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis. Biotechnol Bioeng. 2009;104:381–389.
Gao J, Yang HH, Feng XH, Li S, Xu H. A 2,3‐butanediol dehydrogenase from Paenibacillus polymyxa ZJ‐9 for mainly producing R,R‐2,3‐butanediol: Purification, characterization and cloning. J Basic Microbiol. 2013;53:733–741.
Wang X, Jia L, Ji F. Structural and enzymatic characterization of Bacillus subtilis R,R‐2,3‐butanediol dehydrogenase. Biochim Biophys Acta. 2023;1867:130326.
AlphaFold2.Ipynb‐Colaboratory. https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb (2023). Accessed 24 Apr 2023.
Hekkelman ML, de Vries I, Joosten RP, Perrakis A. AlphaFill: Enriching AlphaFold models with ligands and cofactors. Nature Methods. 2023;20:205–213.
Eberhardt J, Santos‐Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61:3891–3898.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–D1395.
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminf. 2011;3:33.
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791.
DeLano WL The PyMOL Molecular Graphics System. Delano Scientific, San Carlos. 2002.
Laskowski RA, Swindells MB. LigPlot+: multiple ligand‐protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–2786.
Notredame C, Higgins DG, Heringa J. T‐Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302:205–217.
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324.
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site‐directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–59.
Holm L. Dali server: Structural unification of protein families. Nucleic Acids Res. 2022;50:W210–W215.
Banfield MJ, Salvucci ME, Baker EN, Smith CA. Crystal structure of the NADP(H)‐dependent ketose reductase from Bemisia argentifolii at 2.3 Å resolution11Edited by R. Huber. J Mol Biol. 2001;306:239–250.
Peluso P, Chankvetadze B. Recent developments in molecular modeling tools and applications related to pharmaceutical and biomedical research. J Pharm Biomed Anal. 2024;238:115836.
Tang W, Gui C, Zhang T. Expression, Purification, and Bioinformatic Prediction of Mycobacterium tuberculosis Rv0439c as a Potential NADP+‐Retinol Dehydrogenase. Mol Biotechnol. 2023. https://doi.org/10.1007/s12033-023-00956-z.
Wu K, Yang Z, Meng X, Chen R, Huang J, Shao L. Engineering an alcohol dehydrogenase with enhanced activity and stereoselectivity toward diaryl ketones: Reduction of steric hindrance and change of the stereocontrol element. Catal Sci Technol. 2020;10:1650–1660.
Kong XD, Yuan S, Li L, Chen S, Xu JH, Zhou J. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. Proc Natl Acad Sci. 2014;111:15717–15722.
Muller BH, Lamoure C, Le Du MH, Cattolico L, Lajeunesse E, Lemaître F, et al. Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket. ChemBioChem. 2001;2:517–523.
Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG, et al. Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem. 2006;4:1687–1697.
Tan CS, Hassan M, Mohamed Hussein ZA, Ismail I, Ho KL, Ng CL, et al. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol‐specific enzyme for citral biosynthesis. Plant Physiol Biochem. 2018;123:359–368.
Levin I, Meiri G, Peretz M, Burstein Y, Frolow F. The ternary complex of Pseudomonas aeruginosa alcohol dehydrogenase with NADH and ethylene glycol. Prot Sci. 2004;13:1547–1556.
Esposito L, Bruno I, Sica F, Raia CA, Giordano A, Rossi M, et al. Crystal structure of a ternary complex of the alcohol dehydrogenase from Sulfolobus solfataricus. Biochemistry. 2003;42:14397–14407.
Raj SB, Ramaswamy S, Plapp BV. Yeast alcohol dehydrogenase structure and catalysis. Biochemistry. 2014;53:5791–5803.
Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 2013;4:82–91.
Ji XJ, Huang H, Ouyang PK. Microbial 2,3‐butanediol production: a state‐of‐the‐art review. Biotech Adv. 2011;29:351–364.
Białkowska AM. Strategies for efficient and economical 2,3‐butanediol production: new trends in this field. World J Microbiol Biotechnol. 2016;32:200.
Faria PE, Castro AM, Freire DMG, Mesquita RD. Enzymes and pathways in microbial production of 2,3‐butanediol and 3‐acetoin isomers. Crit Rev Biotechnol. 2023;43:67–81.
Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol. 2018;16:226–240.
معلومات مُعتمدة: 202110367017 National College Students Innovation and Entrepreneurship Training Program; bsqd202215 Doctoral Starting up Foundation of Bengbu Medical College; 2023AH051932 Natural Science Research Project of the Anhui Educational Committee
فهرسة مساهمة: Keywords: (2 R,3 R)‑2,3‑butanediol dehydrogenase; medium‐chain dehydrogenase/reductase superfamily; molecular docking, kinetics; site‐directed mutagenesis
المشرفين على المادة: EC 1.1.- (Alcohol Oxidoreductases)
0 (Butylene Glycols)
47E5O17Y3R (Phenylalanine)
EC 1.1.1.4 (butanediol dehydrogenase)
45427ZB5IJ (2,3-butylene glycol)
0 (Bacterial Proteins)
HG18B9YRS7 (Valine)
تواريخ الأحداث: Date Created: 20240422 Date Completed: 20240605 Latest Revision: 20240605
رمز التحديث: 20240606
DOI: 10.1002/jobm.202300751
PMID: 38644586
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4028
DOI:10.1002/jobm.202300751