دورية أكاديمية

Inhibition of 14-3-3 proteins increases the intrinsic excitability of mouse hippocampal CA1 pyramidal neurons.

التفاصيل البيبلوغرافية
العنوان: Inhibition of 14-3-3 proteins increases the intrinsic excitability of mouse hippocampal CA1 pyramidal neurons.
المؤلفون: Logue JB; Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA., Vilmont V; Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA., Zhang J; Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA., Wu Y; Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA., Zhou Y; Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA.
المصدر: The European journal of neuroscience [Eur J Neurosci] 2024 Jun; Vol. 59 (12), pp. 3309-3321. Date of Electronic Publication: 2024 Apr 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
مواضيع طبية MeSH: 14-3-3 Proteins*/metabolism , 14-3-3 Proteins*/genetics , Pyramidal Cells*/metabolism , Pyramidal Cells*/physiology , Pyramidal Cells*/drug effects , CA1 Region, Hippocampal*/metabolism , CA1 Region, Hippocampal*/physiology , Mice, Knockout* , Action Potentials*/physiology , Action Potentials*/drug effects, Animals ; Mice ; Male ; Mice, Inbred C57BL ; Oligopeptides/pharmacology ; Proteins
مستخلص: 14-3-3 proteins are a family of regulatory proteins that are abundantly expressed in the brain and enriched at the synapse. Dysfunctions of these proteins have been linked to neurodevelopmental and neuropsychiatric disorders. Our group has previously shown that functional inhibition of these proteins by a peptide inhibitor, difopein, in the mouse brain causes behavioural alterations and synaptic plasticity impairment in the hippocampus. Recently, we found an increased cFOS expression in difopein-expressing dorsal CA1 pyramidal neurons, indicating enhanced neuronal activity by 14-3-3 inhibition in these cells. In this study, we used slice electrophysiology to determine the effects of 14-3-3 inhibition on the intrinsic excitability of CA1 pyramidal neurons from a transgenic 14-3-3 functional knockout (FKO) mouse line. Our data demonstrate an increase in intrinsic excitability associated with 14-3-3 inhibition, as well as reveal action potential firing pattern shifts after novelty-induced hyperlocomotion in the 14-3-3 FKO mice. These results provide novel information on the role 14-3-3 proteins play in regulating intrinsic and activity-dependent neuronal excitability in the hippocampus.
(© 2024 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
References: Banks, P. J., & Bashir, Z. I. (2021). NMDARs in prefrontal cortex—Regulation of synaptic transmission and plasticity. Neuropharmacology, 192, 108614. https://doi.org/10.1016/j.neuropharm.2021.108614.
Belujon, P., & Grace, A. A. (2017). Dopamine system dysregulation in major depressive disorders. International Journal of Neuropsychopharmacology, 20(12), 1036–1046. https://doi.org/10.1093/ijnp/pyx056.
Bingman, V. P., Salas, C., & Rodriguez, F. (2009). Evolution of the hippocampus. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of neuroscience (pp. 1356–1360). Springer. https://doi.org/10.1007/978-3-540-29678-2_3158.
Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences, 101(40), 14515–14520. https://doi.org/10.1073/pnas.0406344101.
Catterall, W. A. (2011). Voltage‐gated calcium channels. Cold Spring Harbor Perspectives in Biology, 3(8), a003947. https://doi.org/10.1101/cshperspect.a003947.
Chen, S., Benninger, F., & Yaari, Y. (2014). Role of small conductance Ca2+‐activated K+ channels in controlling CA1 pyramidal cell excitability. The Journal of Neuroscience, 34(24), 8219–8230. https://doi.org/10.1523/JNEUROSCI.0936-14.2014.
Cohen, J. D., Bolstad, M., & Lee, A. K. (2017). Experience‐dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife, 6, e23040. https://doi.org/10.7554/eLife.23040.
Dragunow, M., & Faull, R. (1989). The use of c‐fos as a metabolic marker in neuronal pathway tracing. Journal of Neuroscience Methods, 29(3), 261–265. https://doi.org/10.1016/0165-0270(89)90150-7.
Duman, R. S. (2014). Pathophysiology of depression and innovative treatments: Remodeling glutamatergic synaptic connections. Dialogues in Clinical Neuroscience, 16(1), 11–27. https://doi.org/10.31887/DCNS.2014.16.1/rduman.
Dunn, A. R., Neuner, S. M., Ding, S., Hope, K. A., O'Connell, K. M. S., & Kaczorowski, C. C. (2019). Cell‐type‐specific changes in intrinsic excitability in the subiculum following learning and exposure to novel environmental contexts. ENeuro, 5(6), ENEURO.0484‐18.2018. https://doi.org/10.1523/ENEURO.0484-18.2018.
Faber, E. L., & Sah, P. (2007). Functions of Sk channels in central neurons. Clinical and Experimental Pharmacology and Physiology, 34(10), 1077–1083. https://doi.org/10.1111/j.1440-1681.2007.04725.x.
Foote, M., Qiao, H., Graham, K., Wu, Y., & Zhou, Y. (2015). Inhibition of 14‐3‐3 proteins leads to schizophrenia‐related behavioral phenotypes and synaptic defects in mice. Biological Psychiatry, 78(6), 386–395. https://doi.org/10.1016/j.biopsych.2015.02.015.
Foote, M., & Zhou, Y. (2012). 14‐3‐3 proteins in neurological disorders. International Journal of Biochemistry and Molecular Biology, 3(2), 152–164.
Frick, A., Magee, J., & Johnston, D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neuroscience, 7(2), 2–135. https://doi.org/10.1038/nn1178.
Fujita, M., Ochiai, Y., Takeda, T.‐C., Hagino, Y., Kobayashi, K., & Ikeda, K. (2020). Increase in excitability of hippocampal neurons during novelty‐induced hyperlocomotion in dopamine‐deficient mice. Molecular Brain, 13, 126. https://doi.org/10.1186/s13041-020-00664-8.
Gasparini, S., & Magee, J. C. (2006). State‐dependent dendritic computation in hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 26(7), 2088–2100. https://doi.org/10.1523/JNEUROSCI.4428-05.2006.
Gondard, E., Teves, L., Wang, L., McKinnon, C., Hamani, C., Kalia, S. K., Carlen, P. L., Tymianski, M., & Lozano, A. M. (2019). Deep brain stimulation rescues memory and synaptic activity in a rat model of global ischemia. Journal of Neuroscience, 39(13), 2430–2440. https://doi.org/10.1523/JNEUROSCI.1222-18.2019.
Graham, K., Zhang, J., Qiao, H., Wu, Y., & Zhou, Y. (2019). Region‐specific inhibition of 14‐3‐3 proteins induces psychomotor behaviors in mice. NPJ Schizophrenia, 5, 1. https://doi.org/10.1038/s41537-018-0069-1.
Graves, A. R., Moore, S. J., Bloss, E. B., Mensh, B. D., Kath, W. L., & Spruston, N. (2012). Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors. Neuron, 76(4), 776–789. https://doi.org/10.1016/j.neuron.2012.09.036.
Guerrero, A. B., Logue, J., Schoepfer, K., Zhou, Y., & Kabbaj, M. (2022). Data and experimental setup for a comprehensive study of ketamine's effect on neuronal plasticity following social isolation rearing in male and female rats. Data in Brief, 43, 108338. https://doi.org/10.1016/j.dib.2022.108338.
Hotka, M., & Kubista, H. (2019). The paroxysmal depolarization shift in epilepsy research. The International Journal of Biochemistry & Cell Biology, 107, 77–81. https://doi.org/10.1016/j.biocel.2018.12.006.
Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic‐pituitary‐adrenocortical axis. Endocrine Reviews, 12(2), 118–134. https://doi.org/10.1210/edrv-12-2-118.
Jarsky, T., Roxin, A., Kath, W. L., & Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neuroscience, 8(12), 12–1676. https://doi.org/10.1038/nn1599.
Johnston, D., Hoffman, D. A., Colbert, C. M., & Magee, J. C. (1999). Regulation of back‐propagating action potentials in hippocampal neurons. Current Opinion in Neurobiology, 9(3), 288–292. https://doi.org/10.1016/s0959-4388(99)80042-7.
Jones, Z. B., Zhang, J., Wu, Y., & Zhou, Y. (2021). Inhibition of 14‐3‐3 proteins alters neural oscillations in mice. Frontiers in Neural Circuits, 15, 647856. https://doi.org/10.3389/fncir.2021.647856.
Jung, H., Staff, N. P., & Spruston, N. (2001). Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current. Journal of Neuroscience, 21(10), 3312–3321. https://doi.org/10.1523/JNEUROSCI.21-10-03312.2001.
Kätzel, D., Wolff, A. R., Bygrave, A. M., & Bannerman, D. M. (2020). Hippocampal hyperactivity as a druggable circuit‐level origin of aberrant salience in schizophrenia. Frontiers in Pharmacology, 11, 486811. https://doi.org/10.3389/fphar.2020.486811.
Khalaf‐Nazzal, R., & Francis, F. (2013). Hippocampal development—Old and new findings. Neuroscience, 248, 225–242. https://doi.org/10.1016/j.neuroscience.2013.05.061.
Kiemes, A., Gomes, F. V., Cash, D., Uliana, D. L., Simmons, C., Singh, N., Vernon, A. C., Turkheimer, F., Davies, C., Stone, J. M., Grace, A. A., & Modinos, G. (2022). GABAA and NMDA receptor density alterations and their behavioral correlates in the gestational methylazoxymethanol acetate model for schizophrenia. Neuropsychopharmacology, 47(3), 3–695. https://doi.org/10.1038/s41386-021-01213-0.
Kubista, H., Boehm, S., & Hotka, M. (2019). The paroxysmal depolarization shift: Reconsidering its role in epilepsy, epileptogenesis and beyond. International Journal of Molecular Sciences, 20(3), 577. https://doi.org/10.3390/ijms20030577.
Lancaster, B., & Adams, P. R. (1986). Calcium‐dependent current generating the afterhyperpolarization of hippocampal neurons. Journal of Neurophysiology, 55(6), 1268–1282. https://doi.org/10.1152/jn.1986.55.6.1268.
Lee, G. S., Zhang, J., Wu, Y., & Zhou, Y. (2021). 14‐3‐3 proteins promote synaptic localization of N‐methyl d‐aspartate receptors (NMDARs) in mouse hippocampal and cortical neurons. PLoS ONE, 16(12), e0261791. https://doi.org/10.1371/journal.pone.0261791.
Lerche, H., Shah, M., Beck, H., Noebels, J., Johnston, D., & Vincent, A. (2013). Ion channels in genetic and acquired forms of epilepsy. The Journal of Physiology, 591(Pt 4), 753–764. https://doi.org/10.1113/jphysiol.2012.240606.
Li, M., Long, C., & Yang, L. (2015). Hippocampal‐prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. BioMed Research International, 2015, e810548. https://doi.org/10.1155/2015/810548.
Li, Y., Wu, Y., & Zhou, Y. (2006). Modulation of inactivation properties of CaV2.2 channels by 14‐3‐3 proteins. Neuron, 51(6), 755–771. https://doi.org/10.1016/j.neuron.2006.08.014.
Lodge, D. J., & Grace, A. A. (2009). Gestational methylazoxymethanol acetate administration: A developmental disruption model of schizophrenia. Behavioural Brain Research, 204(2), 306–312. https://doi.org/10.1016/j.bbr.2009.01.031.
Logue, J., Schoepfer, K., Guerrero, A. B., Zhou, Y., & Kabbaj, M. (2022). Sex‐specific effects of social isolation stress and ketamine on hippocampal plasticity. Neuroscience Letters, 766, 136301. https://doi.org/10.1016/j.neulet.2021.136301.
Magee, J. C., & Carruth, M. (1999). Dendritic voltage‐gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 82(4), 1895–1901. https://doi.org/10.1152/jn.1999.82.4.1895.
Magee, J. C., & Johnston, D. (1995). Synaptic activation of voltage‐gated channels in the dendrites of hippocampal pyramidal neurons. Science, 268(5208), 301–304. https://doi.org/10.1126/science.7716525.
Marissal, T., Salazar, R. F., Bertollini, C., Mutel, S., De Roo, M., Rodriguez, I., Müller, D., & Carleton, A. (2018). Restoring wild‐type‐like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nature Neuroscience, 21(10), 10–1420. https://doi.org/10.1038/s41593-018-0225-y.
Olsen, K. M., & Sheng, M. (2012). NMDA receptors and BAX are essential for Aβ impairment of LTP. Scientific Reports, 2, 225. https://doi.org/10.1038/srep00225.
Park, J.‐Y., Remy, S., Varela, J., Cooper, D. C., Chung, S., Kang, H.‐W., Lee, J.‐H., & Spruston, N. (2010). A post‐burst afterdepolarization is mediated by group I metabotropic glutamate receptor‐dependent upregulation of Cav2.3 R‐type calcium channels in CA1 pyramidal neurons. PLoS Biology, 8(11), e1000534. https://doi.org/10.1371/journal.pbio.1000534.
Qiao, H., Foote, M., Graham, K., Wu, Y., & Zhou, Y. (2014). 14‐3‐3 proteins are required for hippocampal long‐term potentiation and associative learning and memory. The Journal of Neuroscience, 34(14), 4801–4808. https://doi.org/10.1523/JNEUROSCI.4393-13.2014.
Rinaldi, A., Romeo, S., Agustín‐Pavón, C., Oliverio, A., & Mele, A. (2010). Distinct patterns of Fos immunoreactivity in striatum and hippocampus induced by different kinds of novelty in mice. Neurobiology of Learning and Memory, 94(3), 373–381. https://doi.org/10.1016/j.nlm.2010.08.004.
Roy, D. S., Zhang, Y., Aida, T., Choi, S., Chen, Q., Hou, Y., Lea, N. E., Skaggs, K. M., Quay, J. C., Liew, M., Maisano, H., Le, V., Jones, C., Xu, J., Kong, D., Sullivan, H. A., Saunders, A., McCarroll, S. A., Wickersham, I. R., & Feng, G. (2021). Anterior thalamic dysfunction underlies cognitive deficits in a subset of neuropsychiatric disease models. Neuron, 109(16), 2590–2603.e13. https://doi.org/10.1016/j.neuron.2021.06.005.
Rubi, L., Schandl, U., Lagler, M., Geier, P., Spies, D., Gupta, K. D., Boehm, S., & Kubista, H. (2013). Raised activity of L‐type calcium channels renders neurons prone to form paroxysmal depolarization shifts. Neuromolecular Medicine, 15(3), 476–492. https://doi.org/10.1007/s12017-013-8234-1.
Shao, J., Liu, Y., Gao, D., Tu, J., & Yang, F. (2021). Neural burst firing and its roles in mental and neurological disorders. Frontiers in Cellular Neuroscience, 15, 741292. https://doi.org/10.3389/fncel.2021.741292.
Sigurdsson, T., Stark, K. L., Karayiorgou, M., Gogos, J. A., & Gordon, J. A. (2010). Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature, 464(7289), 7289–7767. https://doi.org/10.1038/nature08855.
Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., & Barnes, C. A. (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews. Neuroscience, 12(10), 585–601. https://doi.org/10.1038/nrn3085.
Stiglbauer, V., Hotka, M., Ruiß, M., Hilber, K., Boehm, S., & Kubista, H. (2017). Cav1.3 channels play a crucial role in the formation of paroxysmal depolarization shifts in cultured hippocampal neurons. Epilepsia, 58(5), 858–871. https://doi.org/10.1111/epi.13719.
Sun, X., Gu, X. Q., & Haddad, G. G. (2003). Calcium influx via L‐ and N‐type calcium channels activates a transient large‐conductance Ca2+‐activated K+current in mouse neocortical pyramidal neurons. The Journal of Neuroscience, 23(9), 3639–3648. https://doi.org/10.1523/JNEUROSCI.23-09-03639.2003.
Swietek, B., Gupta, A., Proddutur, A., & Santhakumar, V. (2016). Immunostaining of biocytin‐filled and processed sections for neurochemical markers. Journal of Visualized Experiments: JoVE, 118, 54880. https://doi.org/10.3791/54880.
Teplov, I. Y., Zinchenko, V. P., Kosenkov, A. M., Gaidin, S. G., Nenov, M. N., & Sergeev, A. I. (2021). Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochemical and Biophysical Research Communications, 553, 99–106. https://doi.org/10.1016/j.bbrc.2021.02.149.
van den Buuse, M. (2010). Modeling the positive symptoms of schizophrenia in genetically modified mice: Pharmacology and methodology aspects. Schizophrenia Bulletin, 36(2), 246–270. https://doi.org/10.1093/schbul/sbp132.
Westenbroek, R. E., Ahlijanian, M. K., & Catterall, W. A. (1990). Clustering of L‐type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 347(6290), 281–284. https://doi.org/10.1038/347281a0.
Zhang, J., Navarrete, M., Wu, Y., & Zhou, Y. (2022). 14‐3‐3 dysfunction in dorsal hippocampus CA1 (dCA1) induces psychomotor behavior via a dCA1‐lateral septum‐ventral tegmental area pathway. Frontiers in Molecular Neuroscience, 15, 817227. https://doi.org/10.3389/fnmol.2022.817227.
Zhou, Y., Schopperle, W. M., Murrey, H., Jaramillo, A., Dagan, D., Griffith, L. C., & Levitan, I. B. (1999). A dynamically regulated 14–3–3, slob, and slowpoke potassium channel complex in drosophila presynaptic nerve terminals. Neuron, 22(4), 809–818. https://doi.org/10.1016/S0896-6273(00)80739-4.
معلومات مُعتمدة: 1RO1MH115188-01 National Institutes of Health, USA
فهرسة مساهمة: Keywords: 14‐3‐3 proteins; electrophysiology; hippocampus; voltage‐gated calcium channels
المشرفين على المادة: 0 (14-3-3 Proteins)
0 (difopein)
0 (Oligopeptides)
0 (Proteins)
تواريخ الأحداث: Date Created: 20240422 Date Completed: 20240614 Latest Revision: 20240614
رمز التحديث: 20240614
DOI: 10.1111/ejn.16349
PMID: 38646841
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-9568
DOI:10.1111/ejn.16349