دورية أكاديمية

Metabolic characterization of sphere-derived prostate cancer stem cells reveals aberrant urea cycle in stemness maintenance.

التفاصيل البيبلوغرافية
العنوان: Metabolic characterization of sphere-derived prostate cancer stem cells reveals aberrant urea cycle in stemness maintenance.
المؤلفون: Luo Y; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.; State Key Laboratory of Medical Proteomics, Beijing, China.; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.; University of Chinese Academy of Sciences, Beijing, China., Yu J; Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China., Lin Z; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.; State Key Laboratory of Medical Proteomics, Beijing, China.; Liaoning Province Key Laboratory of Metabolomics, Dalian, China., Wang X; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.; State Key Laboratory of Medical Proteomics, Beijing, China.; Liaoning Province Key Laboratory of Metabolomics, Dalian, China., Zhao J; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.; State Key Laboratory of Medical Proteomics, Beijing, China.; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.; University of Chinese Academy of Sciences, Beijing, China., Liu X; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.; State Key Laboratory of Medical Proteomics, Beijing, China.; Liaoning Province Key Laboratory of Metabolomics, Dalian, China., Qin W; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.; State Key Laboratory of Medical Proteomics, Beijing, China.; Liaoning Province Key Laboratory of Metabolomics, Dalian, China., Xu G; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.; State Key Laboratory of Medical Proteomics, Beijing, China.; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
المصدر: International journal of cancer [Int J Cancer] 2024 Aug 15; Vol. 155 (4), pp. 742-755. Date of Electronic Publication: 2024 Apr 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0042124 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0215 (Electronic) Linking ISSN: 00207136 NLM ISO Abbreviation: Int J Cancer Subsets: MEDLINE
أسماء مطبوعة: Publication: 1995- : New York, NY : Wiley-Liss
Original Publication: 1966-1984 : Genève : International Union Against Cancer
مواضيع طبية MeSH: Prostatic Neoplasms*/metabolism , Prostatic Neoplasms*/pathology , Neoplastic Stem Cells*/metabolism , Neoplastic Stem Cells*/pathology , Pyrroline Carboxylate Reductases*/metabolism , Urea*/metabolism , delta-1-Pyrroline-5-Carboxylate Reductase*, Male ; Humans ; Animals ; Mice ; Cell Line, Tumor ; Signal Transduction ; Janus Kinase 2/metabolism ; Metabolomics/methods ; Proline/metabolism ; STAT3 Transcription Factor/metabolism ; Spheroids, Cellular/metabolism ; Spheroids, Cellular/pathology ; Cell Proliferation ; Lipidomics/methods
مستخلص: Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.
(© 2024 UICC.)
References: Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12‐49.
Halbrook CJ, Lyssiotis CA. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell. 2017;31:5‐19.
Trock BJ. Application of metabolomics to prostate cancer. Urol Oncol. 2011;29:572‐581.
Lin C, Salzillo TC, Bader DA, et al. Prostate cancer energetics and biosynthesis. Adv Exp Med Biol. 2019;1210:185‐237.
Zhou L, Song Z, Hu J, et al. ACSS3 represses prostate cancer progression through downregulating lipid droplet‐associated protein PLIN3. Theranostics. 2021;11:841‐860.
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124‐1134.
Li JJ, Shen MM. Prostate stem cells and cancer stem cells. Cold Spring Harb Perspect Med. 2019;9:a030395.
Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13:727‐738.
Miyashita M, Tomogane M, Nakamura Y, et al. Sphere‐derived prostate cancer stem cells are resistant to γδ T cell cytotoxicity. Anticancer Res. 2020;40:5481‐5487.
Su W, Han HH, Wang Y, et al. The polycomb repressor complex 1 drives double‐negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell. 2019;36:139‐155.
Jamroze A, Chatta G, Tang DG. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett. 2021;518:1‐9.
Aguilar E, Marin de Mas I, Zodda E, et al. Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial‐mesenchymal transition program. Stem Cells. 2016;34:1163‐1176.
O'Reilly D, Johnson P, Buchanan PJ. Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids. 2019;152:108497.
Bort A, Sánchez BG, León C, et al. Metabolic fingerprinting of chemotherapy‐resistant prostate cancer stem cells. An untargeted metabolomic approach by liquid chromatography‐mass spectrometry. Front Cell Dev Biol. 2022;10:1005675.
Ah Mew N, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea cycle disorders overview. In: Pagon RA, Adam MP, Ardinger HH, et al., eds. GeneReviews. University of Washington; 2003.
Keshet R, Szlosarek P, Carracedo A, Erez A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat Rev Cancer. 2018;18:634‐645.
Lee JS, Adler L, Karathia H, et al. Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures. Cell. 2018;174:1559‐1570.
Tsai CY, Chi HC, Chi LM, et al. Argininosuccinate synthetase 1 contributes to gastric cancer invasion and progression by modulating autophagy. FASEB J. 2018;32:2601‐2614.
Keshet R, Lee JS, Adler L, et al. Targeting purine synthesis in ASS1‐expressing tumors enhances the response to immune checkpoint inhibitors. Nat Cancer. 2020;1:894‐908.
Chen CL, Hsu SC, Chung TY, et al. Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells. Nat Commun. 2021;12:2398.
Franko A, Shao Y, Heni M, et al. Human prostate cancer is characterized by an increase in urea cycle metabolites. Cancers (Basel). 2020;12:1814.
Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736‐746.
Schroeder A, Herrmann A, Cherryholmes G, et al. Loss of androgen receptor expression promotes a stem‐like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 2014;74:1227‐1237.
Kroon P, Berry PA, Stower MJ, et al. JAK‐STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem‐like cells. Cancer Res. 2013;73:5288‐5298.
Deng S, Wang C, Wang Y, et al. Ectopic JAK‐STAT activation enables the transition to a stem‐like and multilineage state conferring AR‐targeted therapy resistance. Nat Cancer. 2022;3:1071‐1087.
Zhang L, Zhao X, Wang E, et al. PYCR1 promotes the malignant progression of lung cancer through the JAK‐STAT3 signaling pathway via PRODH‐dependent glutamine synthesize. Transl Oncol. 2023;32:101667.
Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects. Adv Sci (Weinh). 2020;7:2001714.
Charafe‐Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehydrogenase 1‐positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16:45‐55.
Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018;18:33‐50.
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946‐10951.
Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16:732‐749.
Zaal EA, Berkers CR. The influence of metabolism on drug response in cancer. Front Oncol. 2018;8:500.
Scaglia N, Frontini‐López YR, Zadra G. Prostate cancer progression: as a matter of fats. Front Oncol. 2021;11:719865.
Watt MJ, Clark AK, Selth LA, et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med. 2019;11:eaau5758.
Fritz J, Bjørge T, Nagel G, et al. The triglyceride‐glucose index as a measure of insulin resistance and risk of obesity‐related cancers. Int J Epidemiol. 2020;49:193‐204.
Wang X, Sun B, Wei L, et al. Cholesterol and saturated fatty acids synergistically promote the malignant progression of prostate cancer. Neoplasia. 2022;24:86‐97.
Benjamin DI, Cozzo A, Ji X, et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc Natl Acad Sci U S A. 2013;110:14912‐14917.
Reynolds CP, Maurer BJ, Kolesnick RN. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 2004;206:169‐180.
Liu YY, Hill RA, Li YT. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res. 2013;117:59‐89.
Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004;4:604‐616.
Changou CA, Chen YR, Xing L, et al. Arginine starvation‐associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl Acad Sci U S A. 2014;111:14147‐14152.
Delage B, Fennell DA, Nicholson L, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010;126:2762‐2772.
Khare S, Kim LC, Lobel G, et al. ASS1 and ASL suppress growth in clear cell renal cell carcinoma via altered nitrogen metabolism. Cancer Metab. 2021;9:40.
Tomomura M, Tomomura A, Dewan MA, Saheki T. Long‐chain fatty acids suppress the induction of urea cycle enzyme genes by glucocorticoid action. FEBS Lett. 1996;399:310‐312.
Madiraju AK, Alves T, Zhao X, et al. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism. Proc Natl Acad Sci U S A. 2016;113:E3423‐E3430.
Cai F, Miao Y, Liu C, et al. Pyrroline‐5‐carboxylate reductase 1 promotes proliferation and inhibits apoptosis in non‐small cell lung cancer. Oncol Lett. 2018;15:731‐740.
Ernst T, Hergenhahn M, Kenzelmann M, et al. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol. 2002;160:2169‐2180.
Loayza‐Puch F, Rooijers K, Buil LC, et al. Tumour‐specific proline vulnerability uncovered by differential ribosome codon reading. Nature. 2016;530:490‐494.
Elia I, Broekaert D, Christen S, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267.
Cui B, He B, Huang Y, et al. Pyrroline‐5‐carboxylate reductase 1 reprograms proline metabolism to drive breast cancer stemness under psychological stress. Cell Death Dis. 2023;14:682.
معلومات مُعتمدة: 21934006 National Natural Science Foundation of China; 32100626 National Natural Science Foundation of China; 2022RQ026 Dalian Science and Technology Talent Innovation Support Program
فهرسة مساهمة: Keywords: JAK2‐STAT3; cancer stem cells; lipidomics; metabolomics; prostate cancer
المشرفين على المادة: EC 1.5.1.- (Pyrroline Carboxylate Reductases)
8W8T17847W (Urea)
EC 1.5.1.2 (delta-1-Pyrroline-5-Carboxylate Reductase)
EC 2.7.10.2 (Janus Kinase 2)
9DLQ4CIU6V (Proline)
0 (STAT3 Transcription Factor)
EC 2.7.10.2 (JAK2 protein, human)
0 (STAT3 protein, human)
تواريخ الأحداث: Date Created: 20240422 Date Completed: 20240619 Latest Revision: 20240619
رمز التحديث: 20240619
DOI: 10.1002/ijc.34967
PMID: 38647131
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0215
DOI:10.1002/ijc.34967