دورية أكاديمية

In vivo assessment of bladder cancer with diffuse reflectance and fluorescence spectroscopy: A comparative study.

التفاصيل البيبلوغرافية
العنوان: In vivo assessment of bladder cancer with diffuse reflectance and fluorescence spectroscopy: A comparative study.
المؤلفون: Zlobina NV; Department of Quantum Electronics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.; Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.; Department of Fundamental Pathology, National Medical Research Center for Endocrinology, Moscow, Russia., Budylin GS; Biomedical Science and Technology Park, Laboratory of Clinical Biophotonics, First Moscow State Medical University, Moscow, Russia., Tseregorodtseva PS; Department of Quantum Electronics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.; Department of Fundamental Pathology, National Medical Research Center for Endocrinology, Moscow, Russia., Andreeva VA; NTO 'IRE-POLUS', Moscow, Russia., Sorokin NI; Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia., Kamalov DM; Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia., Strigunov AA; Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia., Armaganov AG; Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia., Kamalov AA; Department of Urology, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia., Shirshin EA; Department of Quantum Electronics, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
المصدر: Lasers in surgery and medicine [Lasers Surg Med] 2024 Jul; Vol. 56 (5), pp. 496-507. Date of Electronic Publication: 2024 Apr 22.
نوع المنشور: Journal Article; Comparative Study; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8007168 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-9101 (Electronic) Linking ISSN: 01968092 NLM ISO Abbreviation: Lasers Surg Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Wiley-Liss
Original Publication: New York : Alan Liss
مواضيع طبية MeSH: Urinary Bladder Neoplasms*/diagnosis , Urinary Bladder Neoplasms*/pathology , Spectrum Analysis, Raman*/methods , Spectrometry, Fluorescence*/methods, Humans ; Female ; Male ; Aged ; Middle Aged ; Sensitivity and Specificity ; Cystoscopy ; Aged, 80 and over ; Spectroscopy, Near-Infrared/methods
مستخلص: Objectives: The aim of this work is to assess the performance of multimodal spectroscopic approach combined with single core optical fiber for detection of bladder cancer during surgery in vivo.
Methods: Multimodal approach combines diffuse reflectance spectroscopy (DRS), fluorescence spectroscopy in the visible (405 nm excitation) and near-infrared (NIR) (690 nm excitation) ranges, and high-wavenumber Raman spectroscopy. All four spectroscopic methods were combined in a single setup. For 21 patients with suspected bladder cancer or during control cystoscopy optical spectra of bladder cancer, healthy bladder wall tissue and/or scars were measured. Classification of cancerous and healthy bladder tissue was performed using machine learning methods.
Results: Statistically significant differences in relative total haemoglobin content, oxygenation, scattering, and visible fluorescence intensity were found between tumor and normal tissues. The combination of DRS and visible fluorescence spectroscopy allowed detecting cancerous tissue with sensitivity and specificity of 78% and 91%, respectively. The addition of features extracted from NIR fluorescence and Raman spectra did not improve the quality of classification.
Conclusions: This study demonstrates that multimodal spectroscopic approach allows increasing sensitivity and specificity of bladder cancer detection in vivo. The developed approach does not require special probes and can be used with single-core optical fibers applied for laser surgery.
(© 2024 Wiley Periodicals LLC.)
References: Saginala K, Barsouk A, Aluru JS, Rawla P, Padala SA, Barsouk A. Epidemiology of bladder cancer. Med Sci. 2020;8(1):15. https://doi.org/10.3390/medsci8010015.
Sylvester RJ, van der Meijden APM, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, et al. Predicting recurrence and progression in individual patients with Stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466–477. https://doi.org/10.1016/j.eururo.2005.12.031.
Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, et al. EAU guidelines on non–muscle‐invasive urothelial carcinoma of the bladder: update 2016. Eur Urol. 2017;71(3):447–461. https://doi.org/10.1016/j.eururo.2016.05.041.
Mowatt G, N'Dow J, Vale L, Nabi G, Boachie C, Cook JA, et al. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: systematic review and meta‐analysis. Int J Technol Assess Health Care. 2011;27:3–10.
Tschirdewahn S, Harke NN, Hirner L, Stagge E, Hadaschik B, Eisenhardt A. Narrow‐band imaging assisted cystoscopy in the follow‐up of patients with transitional cell carcinoma of the bladder: a randomized study in comparison with white light cystoscopy. World J Urol. 2020;38(6):1509–1515. https://doi.org/10.1007/s00345-019-02926-0.
Zheng C, Lv Y, Zhong Q, Wang R, Jiang Q. Narrow band imaging diagnosis of bladder cancer: systematic review and meta‐analysis. BJU Int. 2012;110(11b):E680–E687. https://doi.org/10.1111/j.1464-410X.2012.11500.x.
Lee JY, Cho KS, Kang DH, Jung HD, Kwon JK, Oh CK, et al. A network meta‐analysis of therapeutic outcomes after new image technology‐assisted transurethral resection for non‐muscle invasive bladder cancer: 5‐aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging. BMC Cancer. 2015;15(1):566. https://doi.org/10.1186/s12885-015-1571-8.
Geldof F, Witteveen M, Sterenborg HJCM, Ruers TJM, Dashtbozorg B. Diffuse reflection spectroscopy at the fingertip: design and performance of a compact side‐firing probe for tissue discrimination during colorectal cancer surgery. Biomed Opt Express. 2023;14(1):128–147. https://doi.org/10.1364/BOE.476242.
Pleskow DK, Sawhney MS, Upputuri PK, Berzin TM, Coughlan MF, Khan U, et al. In vivo detection of bile duct pre‐cancer with endoscopic light scattering spectroscopy. Nat Commun. 2023;14(1):109. https://doi.org/10.1038/s41467-022-35780-7.
Langhout GC, Bydlon TM, van der Voort M, Müller M, Kortsmit J, Lucassen G, et al. Nerve detection using optical spectroscopy, an evaluation in four different models: in human and swine, in‐vivo, and post mortem. Lasers Surg Med. 2018;50(3):253–261. https://doi.org/10.1002/lsm.22755.
Maryam S, Konugolu Venkata Sekar S, Ghauri MD, Fahy E, Nogueira MS, Lu H, et al. Mobile multi‐configuration clinical translational Raman system for oral cancer application. Analyst (Lond). 2023;148(7):1514–1523. https://doi.org/10.1039/D2AN01921C.
Douplik A, Zanati S, Saiko G, Streutker C, Loshchenov M, Adler D, et al. Diffuse reflectance spectroscopy in Barrett's Esophagus: developing a large field‐of‐view screening method discriminating dysplasia from metaplasia. J Biophotonics. 2014;7(5):304–311. https://doi.org/10.1002/jbio.201200114.
de Boer LL, Bydlon TM, van Duijnhoven F, Vranken Peeters MJTFD, Loo CE, Winter‐Warnars GAO, et al. Towards the use of diffuse reflectance spectroscopy for real‐time in vivo detection of breast cancer during surgery. J Transl Med. 2018;16(1):367. https://doi.org/10.1186/s12967-018-1747-5.
Koenig F, Larne R, Enquist H, McGovern FJ, Schomacker KT, Kollias N, et al. Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma. Urology. 1998;51(2):342–345. https://doi.org/10.1016/S0090-4295(97)00612-2.
Mourant JR, Bigio IJ, Boyer J, Conn RL, Johnson T, Shimada T. Spectroscopic diagnosis of bladder cancer with elastic light scattering. Lasers Surg Med. 1995;17(4):350–357. https://doi.org/10.1002/lsm.1900170403.
Pery E, Blondel WCPM, Tindel S, Ghribi M, Leroux A, Guillemin F. Spectral features selection and classification for bimodal optical spectroscopy applied to bladder cancer in vivo diagnosis. IEEE Trans Biomed Eng. 2014;61(1):207–216. https://doi.org/10.1109/TBME.2010.2103559.
Koenig F, Mcgovern FJ, Enquist H, Larne R, Deutsch TF, Schomacker KT. Autofluorescence guided biopsy for the early diagnosis of bladder carcinoma. J Urol. 1998;159(6):1871–1875. https://doi.org/10.1016/S0022-5347(01)63183-5.
Desroches J, Jermyn M, Pinto M, Picot F, Tremblay MA, Obaid S, et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep. 2018;8(1):1792. https://doi.org/10.1038/s41598-018-20233-3.
Aaboubout Y, Nunes Soares MR, Bakker Schut TC, Barroso EM, van der Wolf M, Sokolova E, et al. Intraoperative assessment of resection margins by Raman spectroscopy to guide oral cancer surgery. Analyst (Lond). 2023;148(17):4116–4126. https://doi.org/10.1039/D3AN00650F.
Baria E, Morselli S, Anand S, Fantechi R, Nesi G, Gacci M, et al. Label‐free grading and staging of urothelial carcinoma through multimodal fibre‐probe spectroscopy. J Biophotonics. 2019;12(11):e201900087. https://doi.org/10.1002/jbio.201900087.
Morselli S, Baria E, Cicchi R, Liaci A, Sebastianelli A, Nesi G, et al. The feasibility of multimodal fiber optic spectroscopy analysis in bladder cancer detection, grading, and staging. Urologia. 2021;88(4):306–314. https://doi.org/10.1177/03915603211007018.
Budylin GS, Davydov DA, Zlobina NV, Baev AV, Artyushenko VG, Yakimov BP, et al. In vivo sensing of cutaneous edema: A comparative study of diffuse reflectance, Raman spectroscopy and multispectral imaging. J Biophotonics. 2022;15(1):e202100268. https://doi.org/10.1002/jbio.202100268.
Prahl SA Tabulated molar extinction coefficient for hemoglobin in water. http//omlcogiedu/spectra/hemoglobin/summary_html. Published online 1999.
Stratonnikov AA, Loschenov VB. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. J Biomed Opt. 2001;6(4):457–467. https://doi.org/10.1117/1.1411979.
Heijblom M, Klaase JM, van den Engh FM, van Leeuwen TG, Steenbergen W, Manohar S. Imaging tumor vascularization for detection and diagnosis of breast cancer. Technol Cancer Res Treat. 2011;10(6):607–623. https://doi.org/10.7785/tcrt.2012.500227.
Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–410. https://doi.org/10.1038/nrc1093.
Fischer EG. Nuclear morphology and the biology of cancer cells. Acta Cytol. 2020;64(6):511–519. https://doi.org/10.1159/000508780.
Mourant JR, Hielscher AH, Eick AA, Johnson TM, Freyer JP. Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells. Cancer. 1998;84(6):366–374. https://doi.org/10.1002/(SICI)1097-0142(19981225)84:6<366::AID-CNCR9>3.0.CO;2-7.
D'Hallewin M‐A, Bezdetnaya L, Guillemin F. Fluorescence detection of bladder cancer: a review. Eur Urol. 2002;42(5):417–425. https://doi.org/10.1016/S0302-2838(02)00402-5.
Bochenek K, Aebisher D, Międzybrodzka A, Cieślar G, Kawczyk‐Krupka A. Methods for bladder cancer diagnosis – the role of autofluorescence and photodynamic diagnosis. Photodiagn Photodyn Ther. 2019;27(May):141–148. https://doi.org/10.1016/j.pdpdt.2019.05.036.
JJacobson MC, de Vere White RW, Demos SG. In vivo testing of a prototype system providing simultaneous white light and near infrared autofluorescence image acquisition for detection of bladder cancer. J Biomed Opt. 2012;17(3):036011. https://doi.org/10.1117/1.JBO.17.3.036011.
فهرسة مساهمة: Keywords: autofluorescence; bladder cancer; diffuse reflectance spectroscopy; intraoperative diagnostics; laser spectroscopy
تواريخ الأحداث: Date Created: 20240423 Date Completed: 20240616 Latest Revision: 20240620
رمز التحديث: 20240620
DOI: 10.1002/lsm.23788
PMID: 38650443
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9101
DOI:10.1002/lsm.23788