دورية أكاديمية

Sensitivity of Post-TAVR Hemodynamics to the Distal Aortic Arch Anatomy: A High-Fidelity CFD Study.

التفاصيل البيبلوغرافية
العنوان: Sensitivity of Post-TAVR Hemodynamics to the Distal Aortic Arch Anatomy: A High-Fidelity CFD Study.
المؤلفون: Natarajan T; Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313-2412, USA., Singh-Gryzbon S; Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313-2412, USA.; Department of Chemical Engineering, University of the West Indies, St.Augustine, Trinidad and Tobago., Chen H; Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313-2412, USA., Sadri V; Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313-2412, USA.; Abbott Laboratories, 387 Technology Circle, Atlanta, GA, 30313-2412, USA., Ruile P; Department of Cardiology and Angiology, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany., Neumann FJ; Department of Cardiology and Angiology, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany., Yoganathan AP; Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313-2412, USA., Dasi LP; Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Atlanta, GA, 30313-2412, USA. lakshmi.dasi@gatech.edu.
المصدر: Cardiovascular engineering and technology [Cardiovasc Eng Technol] 2024 Aug; Vol. 15 (4), pp. 463-480. Date of Electronic Publication: 2024 Apr 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101531846 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-4098 (Electronic) Linking ISSN: 1869408X NLM ISO Abbreviation: Cardiovasc Eng Technol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Springer
مواضيع طبية MeSH: Aorta, Thoracic*/anatomy & histology , Aorta, Thoracic*/physiology , Aorta, Thoracic*/diagnostic imaging , Models, Cardiovascular* , Hemodynamics* , Aortic Valve*/anatomy & histology , Aortic Valve*/diagnostic imaging , Patient-Specific Modeling*, Humans ; Hydrodynamics ; Transcatheter Aortic Valve Replacement ; Computer Simulation ; Blood Flow Velocity ; Regional Blood Flow ; Stress, Mechanical
مستخلص: Purpose: Patient-specific simulations of transcatheter aortic valve (TAV) using computational fluid dynamics (CFD) often rely on assumptions regarding proximal and distal anatomy due to the limited availability of high-resolution imaging away from the TAV site and the primary research focus being near the TAV. However, the influence of these anatomical assumptions on computational efficiency and resulting flow characteristics remains uncertain. This study aimed to investigate the impact of different distal aortic arch anatomies-some of them commonly used in literature-on flow and hemodynamics in the vicinity of the TAV using large eddy simulations (LES).
Methods: Three aortic root anatomical configurations with four representative distal aortic arch types were considered in this study. The arch types included a 90-degree bend, an idealized distal aortic arch anatomy, a clipped version of the idealized distal aortic arch, and an anatomy extruded along the normal of segmented anatomical boundary. Hemodynamic parameters both instantaneous and time-averaged such as Wall Shear Stress (WSS), and Oscillatory Shear Index (OSI) were derived and compared from high-fidelity CFD data.
Results: While there were minor differences in flow and hemodynamics across the configurations examined, they were generally not significant within our region of interest i.e., the aortic root. The choice of extension type had a modest impact on TAV hemodynamics, especially in the vicinity of the TAV with variations observed in local flow patterns and parameters near the TAV. However, these differences were not substantial enough to cause significant deviations in the overall flow and hemodynamic characteristics.
Conclusions: The results suggest that under the given configuration and boundary conditions, the type of outflow extension had a modest impact on hemodynamics proximal to the TAV. The findings contribute to a better understanding of flow dynamics in TAV configurations, providing insights for future studies in TAV-related experiments as well as numerical simulations. Additionally, they help mitigate the uncertainties associated with patient-specific geometries, offering increased flexibility in computational modeling.
(© 2024. The Author(s) under exclusive licence to Biomedical Engineering Society.)
References: Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 106(24):3006–3008, 2002. (PMID: 10.1161/01.CIR.0000047200.36165.B812473543)
Smith, C. R., M. B. Leon, M. J. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364(23):2187–2198, 2011. (PMID: 10.1056/NEJMoa110351021639811)
Leon, M. B., C. R. Smith, M. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, D. L. Brown, P. C. Block, R. A. Guyton, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, P. S. Douglas, J. L. Petersen, J. J. Akin, W. N. Anderson, D. Wang, and S. Pocock. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363(17):1597–1607, 2010. (PMID: 10.1056/NEJMoa100823220961243)
Avvedimento, M., Tang, G.H.: Transcatheter aortic valve replacement (tavr): Recent updates. Progress in Cardiovascular Diseases (2021).
Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. De Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, A. Trento, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373(21):2015–2024, 2015. (PMID: 10.1056/NEJMoa150923326436963)
Esmailie, F., A. Razavi, B. Yeats, S. K. Sivakumar, H. Chen, M. Samaee, I. A. Shah, A. Veneziani, P. Yadav, V. H. Thourani, et al. Biomechanics of transcatheter aortic valve replacement complications and computational predictive modeling. Struct. Heart.6(2):100032, 2022. (PMID: 10.1016/j.shj.2022.1000323727373410236878)
Vahidkhah, K., M. Barakat, M. Abbasi, S. Javani, P. N. Azadani, A. Tandar, D. Dvir, and A. N. Azadani. Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets. Eur. J. Cardio-Thoracic Surg. 51(5):927–935, 2017.
Bailoor, S., J.-H. Seo, L. P. Dasi, S. Schena, and R. Mittal. A computational study of the hemodynamics of bioprosthetic aortic valves with reduced leaflet motion. J. Biomech.120:110350, 2021. (PMID: 10.1016/j.jbiomech.2021.11035033743394)
Singh-Gryzbon, S., B. Ncho, V. Sadri, S. S. Bhat, S. S. Kollapaneni, D. Balakumar, Z. A. Wei, P. Ruile, F.-J. Neumann, P. Blanke, et al. Influence of patient-specific characteristics on transcatheter heart valve neo-sinus flow: an in silico study. Ann. Biomed. Eng. 48:2400–2411, 2020. (PMID: 10.1007/s10439-020-02532-x32415483)
Plitman Mayo, R., H. Yaakobovich, A. Finkelstein, S. C. Shadden, and G. Marom. Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation. R. Soc. Open Sci.7(12):201838, 2020. (PMID: 10.1098/rsos.201838334892957813235)
Kovarovic, B. J., O. M. Rotman, P. B. Parikh, M. J. Slepian, and D. Bluestein. Mild paravalvular leak may pose an increased thrombogenic risk in transcatheter aortic valve replacement (tavr) patients-insights from patient specific in vitro and in silico studies. Bioengineering. 10(2):188, 2023. (PMID: 10.3390/bioengineering10020188368296829952825)
Nicoud, F., C. Chnafa, J. Siguenza, V. Zmijanovic, and S. Mendez. Large-eddy simulation of turbulence in cardiovascular flows. Biomed. Technol. 8:147–167, 2018. (PMID: 10.1007/978-3-319-59548-1_9)
Mittal, R., S. Simmons, and H. Udaykumar. Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis. J. Biomech. Eng. 123(4):325–332, 2001. (PMID: 10.1115/1.138584011563757)
Chnafa, C., S. Mendez, and F. Nicoud. Image-based large-eddy simulation in a realistic left heart. Comput. Fluids. 94:173–187, 2014. (PMID: 10.1016/j.compfluid.2014.01.030)
Binder, R. K., J. Rodés-Cabau, D. A. Wood, M. Mok, J. Leipsic, R. De Larochellière, S. Toggweiler, E. Dumont, M. Freeman, A. B. Willson, et al. Transcatheter aortic valve replacement with the sapien 3: a new balloon-expandable transcatheter heart valve. JACC. 6(3):293–300, 2013. (PMID: 23517842)
Pache, G., S. Schoechlin, P. Blanke, S. Dorfs, N. Jander, C. D. Arepalli, M. Gick, H.-J. Buettner, J. Leipsic, M. Langer, et al. Early hypo-attenuated leaflet thickening in balloon-expandable transcatheter aortic heart valves. Eur. Heart J. 37(28):2263–2271, 2016. (PMID: 10.1093/eurheartj/ehv52626446193)
Xu, F., S. Morganti, R. Zakerzadeh, D. Kamensky, F. Auricchio, A. Reali, T. J. Hughes, M. S. Sacks, and M.-C. Hsu. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int. J. Numerical Methods Biomed. Eng. 34(4):2938, 2018. (PMID: 10.1002/cnm.2938)
Boufi, M., C. Guivier-Curien, A. Loundou, V. Deplano, O. Boiron, K. Chaumoitre, V. Gariboldi, and Y. Alimi. Morphological analysis of healthy aortic arch. Eur. J. Vasc. Endovasc. Surg. 53(5):663–670, 2017. (PMID: 10.1016/j.ejvs.2017.02.02328351602)
Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 3(7):1760–1765, 1991. (PMID: 10.1063/1.857955)
Lilly, D. K. A proposed modification of the Germano–Subgrid–Scale Closure method. Phys. Fluids A. 4(3):633–635, 1992. (PMID: 10.1063/1.858280)
Pellegrini, F., Roman, J.: Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs? (1996).
PACE, D.: Partnership for an advanced computing environment (pace) (2017).
Natarajan, T., D. E. MacDonald, M. Najafi, M. O. Khan, and D. A. Steinman. On the spectrographic representation of cardiovascular flow instabilities. J. Biomech.110:109977, 2020. (PMID: 10.1016/j.jbiomech.2020.10997732827783)
Lévy, B., S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graphics (TOG). 21(3):362–371, 2002. (PMID: 10.1145/566654.566590)
Kreiser, J., M. Meuschke, G. Mistelbauer, B. Preim, and T. Ropinski. A survey of flattening-based medical visualization techniques. In: Computer Graphics Forum, Vol. 37, New York: Wiley, 2018, pp. 597–624.
Bozzetto, M., B. Ene-Iordache, and A. Remuzzi. Transitional flow in the venous side of patient-specific arteriovenous fistulae for hemodialysis. Ann. Biomed. Eng. 44:2388–2401, 2016. (PMID: 10.1007/s10439-015-1525-y26698581)
Mancini, V., A. W. Bergersen, J. Vierendeels, P. Segers, and K. Valen-Sendstad. High-frequency fluctuations in post-stenotic patient specific carotid stenosis fluid dynamics: a computational fluid dynamics strategy study. Cardiovasc. Eng. Technol. 10:277–298, 2019. (PMID: 10.1007/s13239-019-00410-9309378536527791)
Valen-Sendstad, K., K.-A. Mardal, M. Mortensen, B. A. P. Reif, and H. P. Langtangen. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J. Biomech. 44(16):2826–2832, 2011. (PMID: 10.1016/j.jbiomech.2011.08.01521924724)
Hunt, J.C., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. Studying turbulence using numerical simulation databases, 2. In: Proceedings of the 1988 summer program (1988).
Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey Jr., and M. A. Gimbrone Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. 83(7):2114–2117, 1986. (PMID: 10.1073/pnas.83.7.21143457378323241)
Boughner, D. R., and M. R. Roach. Effect of low frequency vibration on the arterial wall. Circ. Res. 29(2):136–144, 1971. (PMID: 10.1161/01.RES.29.2.1365105817)
Barakat, A. I. Blood flow and arterial endothelial dysfunction: mechanisms and implications. Comptes Rendus Phys. 14(6):479–496, 2013. (PMID: 10.1016/j.crhy.2013.05.003)
Mamprin, M., Zelis, J.M., Tonino, P.A., Zinger, S., De With, P.H.: Identification of patients at risk of cardiac conduction diseases requiring a permanent pacemaker following tavi procedure: a deep-learning approach on ecg signals. In: Proceedings of the 12th International Conference on Biomedical Engineering and Technology, pp. 75–83 (2022).
Biasetti, J., F. Hussain, and T. C. Gasser. Blood flow and coherent vortices in the normal and Aneurysmatic Aortas: a fluid dynamical approach to intra-luminal thrombus formation. J. R. Soc. Interface. 8(63):1449–1461, 2011. (PMID: 10.1098/rsif.2011.0041214711883163425)
Ab Naim, W. N. W., P. B. Ganesan, Z. Sun, Y. M. Liew, Y. Qia, C. J. Lee, S. Jansen, S. A. Hashim, and E. Lim. Prediction of thrombus formation using vortical structures presentation in stanford type b aortic dissection: a preliminary study using cfd approach. Appl. Math. Modell. 40(4):3115–3127, 2016. (PMID: 10.1016/j.apm.2015.09.096)
Trusty, P. M., V. Sadri, I. D. Madukauwa-David, E. Funnell, N. Kamioka, R. Sharma, R. Makkar, V. Babaliaros, and A. P. Yoganathan. Neosinus flow stasis correlates with thrombus volume post-tavr: a patient-specific in vitro study. JACC. 12(13):1288–1290, 2019. (PMID: 31272673)
Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 157(2):540–549, 2019. (PMID: 10.1016/j.jtcvs.2018.05.08629980299)
Trusty, P. M., S. S. Bhat, V. Sadri, M. T. Salim, E. Funnell, N. Kamioka, R. Sharma, R. Makkar, V. Babaliaros, and A. P. Yoganathan. The role of flow stasis in transcatheter aortic valve leaflet thrombosis. J. Thorac. Cardiovasc. Surg. 164(3):105–117, 2022. (PMID: 10.1016/j.jtcvs.2020.10.139)
Garcia, D., J. G. Dumesnil, L.-G. Durand, L. Kadem, and P. Pibarot. Discrepancies between catheter and doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon: practical implications with regard to quantification of aortic stenosis severity. J. Am. Coll. Cardiol. 41(3):435–442, 2003. (PMID: 10.1016/S0735-1097(02)02764-X12575972)
Samaee, M., H. Hatoum, M. Biersmith, B. Yeats, S. C. Gooden, V. H. Thourani, R. T. Hahn, S. Lilly, A. Yoganathan, and L. P. Dasi. Gradient and pressure recovery of a self-expandable transcatheter aortic valve depends on ascending aorta size: in vitro study. JTCVS Open. 9:28–38, 2022. (PMID: 10.1016/j.xjon.2022.01.003360034619390729)
فهرسة مساهمة: Keywords: CFD; LES; Outflow; Transcatheter aortic valve replacement
تواريخ الأحداث: Date Created: 20240423 Date Completed: 20240813 Latest Revision: 20240813
رمز التحديث: 20240813
DOI: 10.1007/s13239-024-00728-z
PMID: 38653932
قاعدة البيانات: MEDLINE
الوصف
تدمد:1869-4098
DOI:10.1007/s13239-024-00728-z