دورية أكاديمية

Elevated CO 2 and ammonium nitrogen promoted the plasticity of two maple in great lakes region by adjusting photosynthetic adaptation.

التفاصيل البيبلوغرافية
العنوان: Elevated CO 2 and ammonium nitrogen promoted the plasticity of two maple in great lakes region by adjusting photosynthetic adaptation.
المؤلفون: Wang L; Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, China.; Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada., Dang QL; Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada.
المصدر: Frontiers in plant science [Front Plant Sci] 2024 Apr 09; Vol. 15, pp. 1367535. Date of Electronic Publication: 2024 Apr 09 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101568200 Publication Model: eCollection Cited Medium: Print ISSN: 1664-462X (Print) Linking ISSN: 1664462X NLM ISO Abbreviation: Front Plant Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation, 2010-
مستخلص: Introduction: Climate change-related CO 2 increases and different forms of nitrogen deposition are thought to affect the performance of plants, but their interactions have been poorly studied.
Methods: This study investigated the responses of photosynthesis and growth in two invasive maple species, amur maple ( Acer ginnala Maxim.) and boxelder maple ( Acer negundo L.), to elevated CO 2 (400 µmol mol -1 (aCO 2 ) vs. 800 µmol mol -1 (eCO 2 ) and different forms of nitrogen fertilization (100% nitrate, 100% ammonium, and an equal mix of the two) with pot experiment under controlled conditions.
Results and Discussion: The results showed that eCO 2 significantly promoted photosynthesis, biomass, and stomatal conductance in both species. The biochemical limitation of photosynthesis was switched to RuBP regeneration (related to J max ) under eCO 2 from the Rubisco carboxylation limitation (related to V cmax ) under aCO 2 . Both species maximized carbon gain by lower specific leaf area and higher N concentration than control treatment, indicating robust morphological plasticity. Ammonium was not conducive to growth under aCO 2 , but it significantly promoted biomass and photosynthesis under eCO 2 . When nitrate was the sole nitrogen source, eCO 2 significantly reduced N assimilation and growth. The total leaf N per tree was significantly higher in boxelder maple than in amur maple, while the carbon and nitrogen ratio was significantly lower in boxelder maple than in amur maple, suggesting that boxelder maple leaf litter may be more favorable for faster nutrient cycling. The results suggest that increases in ammonium under future elevated CO 2 will enhance the plasticity and adaptation of the two maple species.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
(Copyright © 2024 Wang and Dang.)
References: Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11506-10. (PMID: 15272076)
Plant Physiol Biochem. 2020 Feb;147:181-190. (PMID: 31865164)
New Phytol. 2017 Jun;214(4):1447-1463. (PMID: 28295374)
J Exp Bot. 2021 Feb 2;72(2):341-354. (PMID: 32937655)
Science. 2021 Sep 24;373(6562):eabg5673. (PMID: 34554772)
J Exp Bot. 2019 May 9;70(10):2787-2796. (PMID: 30821324)
New Phytol. 2019 Jan;221(1):32-49. (PMID: 29983005)
Tree Physiol. 2020 Apr 8;40(4):484-497. (PMID: 32031641)
J Exp Bot. 2017 May 1;68(10):2611-2625. (PMID: 28011716)
Glob Chang Biol. 2020 Sep;26(9):5202-5216. (PMID: 32525621)
Nat Commun. 2018 Mar 15;9(1):1094. (PMID: 29545570)
Plant Cell Environ. 2016 Jun;39(6):1198-203. (PMID: 27103099)
Curr Opin Plant Biol. 2015 Jun;25:10-6. (PMID: 25899331)
J Plant Physiol. 2021 Nov;266:153508. (PMID: 34536905)
PLoS One. 2015 Nov 18;10(11):e0143346. (PMID: 26581080)
Plant Physiol. 2021 Feb 25;185(1):146-160. (PMID: 33631811)
Plant Cell Physiol. 2017 Dec 1;58(12):2112-2125. (PMID: 29059445)
BMC Ecol. 2011 Nov 24;11:28. (PMID: 22115342)
J Exp Bot. 2020 Oct 7;71(19):5990-6003. (PMID: 32687190)
J Exp Bot. 2017 May 17;68(11):2667-2681. (PMID: 28830099)
Sci Total Environ. 2023 Jul 15;882:163641. (PMID: 37080304)
Plant Sci. 2016 Nov;252:62-75. (PMID: 27717479)
New Phytol. 2017 Jan;213(1):128-139. (PMID: 27501517)
New Phytol. 2022 Aug;235(3):1260-1271. (PMID: 35488493)
Plant Cell Environ. 2018 Feb;41(2):300-313. (PMID: 29226972)
Glob Chang Biol. 2021 Jan;27(1):27-49. (PMID: 33135850)
Science. 2009 May 8;324(5928):734-5. (PMID: 19423809)
J Exp Bot. 2019 Sep 24;70(18):4949-4962. (PMID: 31145790)
Science. 2022 May 13;376(6594):692-693. (PMID: 35549408)
Glob Chang Biol. 2017 Aug;23(8):3363-3370. (PMID: 27888560)
Nat Commun. 2017 Sep 5;8(1):433. (PMID: 28874666)
New Phytol. 2010 Aug;187(3):831-42. (PMID: 20487316)
Glob Chang Biol. 2019 Apr;25(4):1282-1295. (PMID: 30788883)
Glob Chang Biol. 2020 Jun;26(6):3639-3657. (PMID: 32181545)
J Exp Bot. 2019 Jan 7;70(2):683-690. (PMID: 30403798)
Acta Pharm Sin B. 2016 Mar;6(2):170-81. (PMID: 27006902)
New Phytol. 2012 Sep;195(4):912-922. (PMID: 22709277)
Tree Physiol. 2023 Mar 9;43(3):379-389. (PMID: 36322135)
Am J Bot. 2021 Oct;108(10):1902-1916. (PMID: 34636413)
Sci Total Environ. 2014 Oct 15;496:35-44. (PMID: 25058932)
Plant Physiol. 1992 Apr;98(4):1429-36. (PMID: 16668811)
Physiol Plant. 2011 Jun;142(2):157-69. (PMID: 21320128)
J Exp Bot. 2018 Nov 26;69(22):5599-5609. (PMID: 30189099)
Science. 2022 May 13;376(6594):758-761. (PMID: 35549405)
J Exp Bot. 2023 Mar 13;74(5):1297-1302. (PMID: 36516413)
J Exp Bot. 2021 Apr 2;72(8):3185-3199. (PMID: 33578414)
J Exp Bot. 2022 Jan 5;73(1):263-274. (PMID: 34570887)
Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25734-25744. (PMID: 31767760)
Planta. 1980 Jun;149(1):78-90. (PMID: 24306196)
Glob Chang Biol. 2020 Feb;26(2):746-759. (PMID: 31437334)
J Exp Bot. 2023 Apr 27;74(9):2790-2793. (PMID: 37103002)
Plant J. 2022 Mar;109(6):1591-1613. (PMID: 34967059)
Photosynth Res. 2020 Jun;144(3):327-339. (PMID: 32291595)
J Exp Bot. 2019 Apr 29;70(9):2435-2447. (PMID: 30053195)
Nat Commun. 2021 Aug 16;12(1):4944. (PMID: 34400629)
فهرسة مساهمة: Keywords: amur maple; boxelder maple; global change; nitrogen form; photosynthetic adaptation
تواريخ الأحداث: Date Created: 20240424 Latest Revision: 20240426
رمز التحديث: 20240426
مُعرف محوري في PubMed: PMC11035798
DOI: 10.3389/fpls.2024.1367535
PMID: 38654907
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-462X
DOI:10.3389/fpls.2024.1367535