دورية أكاديمية

A new vision of the efficacy of both CAR-NK and CAR-T cells in treating cancers and autoimmune diseases.

التفاصيل البيبلوغرافية
العنوان: A new vision of the efficacy of both CAR-NK and CAR-T cells in treating cancers and autoimmune diseases.
المؤلفون: Hassan SH; Community Health Department, Technical Institute of Karbala, AL-Furat Al-Awsat Technical University, Najaf, Iraq. inkr.salm@atu.edu.iq., Alshahrani MY; Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia., Saleh RO; Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq., Mohammed BA; Department of Technical Engineering, Al-Hadi University College, Baghdad, 10011, Iraq., Kumar A; Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia., Almalki SG; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia., Alkhafaji AT; Cardiology Department, College of Medicine, Al-Ayen University, Dhi-Qar, Iraq., Ghildiyal P; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India., Al-Tameemi AR; Department of Medical Engineering, AL-Nisour University College, Baghdad, Iraq., Elawady A; College of Technical Engineering, The Islamic University, Najaf, Iraq.; College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.; College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq.
المصدر: Medical oncology (Northwood, London, England) [Med Oncol] 2024 Apr 24; Vol. 41 (6), pp. 127. Date of Electronic Publication: 2024 Apr 24.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 9435512 Publication Model: Electronic Cited Medium: Internet ISSN: 1559-131X (Electronic) Linking ISSN: 13570560 NLM ISO Abbreviation: Med Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : New York : Springer
Original Publication: Northwood, Middlesex, England : Science and Technology Letters, c1994-
مواضيع طبية MeSH: Killer Cells, Natural*/immunology , Killer Cells, Natural*/transplantation , Receptors, Chimeric Antigen*/immunology , Neoplasms*/therapy , Neoplasms*/immunology , Autoimmune Diseases*/therapy , Autoimmune Diseases*/immunology , Immunotherapy, Adoptive*/methods, Humans ; Animals
مستخلص: Chimeric Antigen Receptor (CAR) based therapies are becoming increasingly important in treating patients. CAR-T cells have been shown to be highly effective in the treatment of hematological malignancies. However, harmful therapeutic barriers have been identified, such as the potential for graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome (CRS). As a result, CAR NK-cell therapy is expected to be a new therapeutic option. NK cells act as cytotoxic lymphocytes, supporting the innate immune response against autoimmune diseases and cancer cells by precisely detecting and eliminating malignant cells. Genetic modification of these cells provides a dual approach to the treatment of AD and cancer. It can be used through both CAR-independent and CAR-dependent mechanisms. The use of CAR-based cell therapies has been successful in treating cancer patients, leading to further investigation of this innovative treatment for alternative diseases, including AD. The complementary roles of CAR T and CAR NK cells have stimulated exploration in this area. Our study examines the latest research on the therapeutic effectiveness of these cells in treating both cancer and ADs.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Delorme E, Alexander P. Treatment of primary fibrosarcoma in the rat with immune lymphocytes. The Lancet. 1964;284(7351):117–20. (PMID: 10.1016/S0140-6736(64)90126-6)
Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. (PMID: 23550147366758610.1158/2159-8290.CD-12-0548)
Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149(3):960–8. (PMID: 312274910.1016/0006-291X(87)90502-X)
Oldham RA, Medin JA. Practical considerations for chimeric antigen receptor design and delivery. Expert Opin Biol Ther. 2017;17(8):961–78. (PMID: 2858626410.1080/14712598.2017.1339687)
Morgan MA, Büning H, Schambach A. Use of cell and genome modification technologies to generate improved “off-the-shelf” CAR T and CAR NK cells. Front Immunol. 2020;11: 557760. (PMID: 10.3389/fimmu.2020.01965)
Mehta RS, Rezvani K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 2018;9: 330897. (PMID: 10.3389/fimmu.2018.00283)
Herrera L, Santos S, Vesga MA, Carrascosa T, Garcia-Ruiz JC, Pérez-Martínez A, et al. The race of CAR therapies: CAR-NK cells for fighting B-cell hematological cancers. Cancers. 2021;13(21):5418. (PMID: 34771581858242010.3390/cancers13215418)
Weber EW, Maus MV, Mackall CL. The emerging landscape of immune cell therapies. Cell. 2020;181(1):46–62. (PMID: 32243795890021510.1016/j.cell.2020.03.001)
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discovery. 2020;19(3):200–18. (PMID: 3190740110.1038/s41573-019-0052-1)
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–53. (PMID: 32361713788363210.1038/s41587-020-0462-y)
Moreno C, Haynie C, Johnson A, Weber K. 2022 Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines. 10, 1493. s Note: MDPI stays neutral with regard to jurisdictional claims in published 2022.
Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11:1–9. (PMID: 10.1186/s13045-018-0677-2)
Guedan S, Calderon H, Posey AD, Maus MV. Engineering and design of chimeric antigen receptors. Mol Therapy-Methods & Clinical Development. 2019;12:145–56. (PMID: 10.1016/j.omtm.2018.12.009)
Kim DW, Cho J-Y. Recent advances in allogeneic CAR-T cells. Biomolecules. 2020;10(2):263. (PMID: 32050611707219010.3390/biom10020263)
Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–9. (PMID: 3068078010.1002/ajh.25418)
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci. 1989;86(24):10024–8. (PMID: 251356929863610.1073/pnas.86.24.10024)
Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45. (PMID: 1250976510.1038/nrc971)
Ramos CA, Rouce R, Robertson CS, Reyna A, Narala N, Vyas G, et al. In vivo fate and activity of second-versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas. Mol Ther. 2018;26(12):2727–37. (PMID: 30309819627748410.1016/j.ymthe.2018.09.009)
Braendstrup P, Levine BL, Ruella M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy. 2020;22(2):57–69. (PMID: 32014447703601510.1016/j.jcyt.2019.12.004)
Tomasik J, Jasiński M, Basak GW. Next generations of CAR-T cells-new therapeutic opportunities in hematology? Front Immunol. 2022;13:1034707. (PMID: 36389658965023310.3389/fimmu.2022.1034707)
Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333–47. (PMID: 2427418110.1146/annurev-med-060512-150254)
Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Therapy Methods & Clinical Development. 2017;4:92–101. (PMID: 10.1016/j.omtm.2016.12.006)
Esfahani K, Roudaia L, Na B, Del Rincon S, Papneja N, Miller W. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27(s2):87–97. (PMID: 10.3747/co.27.5223)
Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood J Am Soc Hematol. 2015;125(26):4017–23.
DeVita VT Jr, Chu E. A history of cancer chemotherapy. Can Res. 2008;68(21):8643–53. (PMID: 10.1158/0008-5472.CAN-07-6611)
Boulch M, Cazaux M, Loe-Mie Y, Thibaut R, Corre B, Lemaître F, et al. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci Immunol. 2021;6(57):4344. (PMID: 10.1126/sciimmunol.abd4344)
Qin VM, D’Souza C, Neeson PJ, Zhu JJ. Chimeric antigen receptor beyond CAR-T cells. Cancers. 2021;13(3):404. (PMID: 33499101786552710.3390/cancers13030404)
Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: summary and perspective. J Cellular Immunotherapy. 2016;2(2):59–68. (PMID: 10.1016/j.jocit.2016.08.001)
Firor AE, Jares A, Ma Y. From humble beginnings to success in the clinic: chimeric antigen receptor-modified T-cells and implications for immunotherapy. Exp Biol Med. 2015;240(8):1087–98. (PMID: 10.1177/1535370215584936)
Park JR, DiGiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–33. (PMID: 1729940510.1038/sj.mt.6300104)
Imai C, Mihara K, Andreansky M, Nicholson I, Pui C, Geiger T, et al. Chimeric receptors with 4–1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18(4):676–84. (PMID: 1496103510.1038/sj.leu.2403302)
Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64. (PMID: 19384291280526410.1038/mt.2009.83)
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Translational Med. 2011;3(95):95ra73-95ra73. (PMID: 10.1126/scitranslmed.3002842)
Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3ζ signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3ζ signaling receptor molecule. J Immunol. 2001;167(11):6123–31. (PMID: 1171477110.4049/jimmunol.167.11.6123)
Asmamaw Dejenie T, Tiruneh G, Medhin M, Dessie Terefe G, Tadele Admasu F, Wale Tesega W, Chekol AE. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Human Vaccin Immunotherapeutics. 2022;18(6):2114254. (PMID: 10.1080/21645515.2022.2114254)
Schubert M-L, Schmitt A, Neuber B, Hückelhoven-Krauss A, Kunz A, Wang L, et al. Third-generation CAR T cells targeting CD19 are associated with an excellent safety profile and might improve persistence of CAR T cells in treated patients. Blood. 2019;134:51. (PMID: 10.1182/blood-2019-125423)
Maakaron JE, Hu M, El Jurdi N. Chimeric antigen receptor T cell therapy for cancer: clinical applications and practical considerations. Bmj. 2022. https://doi.org/10.1136/bmj-2021-068956 . (PMID: 10.1136/bmj-2021-068956)
Jung SM, Kim W-U. Targeted immunotherapy for autoimmune disease. Immune Network. 2022. https://doi.org/10.4110/in.2022.22.e9 . (PMID: 10.4110/in.2022.22.e9366279399634145)
Jin X, Xu Q, Pu C, Zhu K, Lu C, Jiang Y, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol. 2021;18(8):1896–903. (PMID: 3247202310.1038/s41423-020-0472-1)
Kansal R, Richardson N, Neeli I, Khawaja S, Chamberlain D, Ghani M, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Translational Med. 2019;11(482):eaav1648. (PMID: 10.1126/scitranslmed.aav1648)
Bao L, Bo X-C, Cao H-W, Qian C, Wang Z, Li B. Engineered T cells and their therapeutic applications in autoimmune diseases. Zool Res. 2022;43(2):150. (PMID: 35008131892084510.24272/j.issn.2095-8137.2021.363)
Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28(10):2124–32. (PMID: 3610963910.1038/s41591-022-02017-5)
Zhang L, Sosinowski T, Cox AR, Cepeda JR, Sekhar NS, Hartig SM, et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II: peptide complex modulate the progression of autoimmune diabetes. J Autoimmun. 2019;96:50–8. (PMID: 3012242010.1016/j.jaut.2018.08.004)
Tenspolde M, Zimmermann K, Weber LC, Hapke M, Lieber M, Dywicki J, et al. Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun. 2019;103: 102289. (PMID: 3117655810.1016/j.jaut.2019.05.017)
Blache U, Tretbar S, Koehl U, Mougiakakos D, Fricke S. CAR T cells for treating autoimmune diseases. RMD Open. 2023;9(4): e002907. (PMID: 379961281066824910.1136/rmdopen-2022-002907)
Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016;353(6295):179–84. (PMID: 27365313534351310.1126/science.aaf6756)
Aghajanian H, Rurik JG, Epstein JA. CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nat Metab. 2022;4(2):163–9. (PMID: 35228742994786210.1038/s42255-022-00537-5)
Parvathaneni K, Scott DW. Engineered FVIII-expressing cytotoxic T cells target and kill FVIII-specific B cells in vitro and in vivo. Blood Adv. 2018;2(18):2332–40. (PMID: 30232086615688110.1182/bloodadvances.2018018556)
Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T cell therapy beyond oncology: autoimmune diseases and viral infections. Biomedicines. 2021;9(1):59. (PMID: 33435454782715110.3390/biomedicines9010059)
Fransson M, Piras E, Burman J, Nilsson B, Essand M, Lu B, et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation. 2012;9:1–12. (PMID: 10.1186/1742-2094-9-112)
Zhang B, Wang Y, Yuan Y, Sun J, Liu L, Huang D, et al. In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Ann Rheum Dis. 2021;80(2):176–84. (PMID: 3299886510.1136/annrheumdis-2020-217844)
Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR, et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci. 2016;113(4):E459–68. (PMID: 26759369474381510.1073/pnas.1524155113)
Lu S-J, Feng Q. CAR-NK cells from engineered pluripotent stem cells: Off-the-shelf therapeutics for all patients. Stem Cells Transl Med. 2021;10(S2):S10–7. (PMID: 34724715856019910.1002/sctm.21-0135)
Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ, editors. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. American Society of Clinical Oncology Educational book American Society of Clinical Oncology Annual Meeting; 2019.
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. (PMID: 29226797588248510.1056/NEJMoa1707447)
Depil S, Duchateau P, Grupp S, Mufti G, Poirot L. ‘Off-the-shelf’allogeneic CAR T cells: development and challenges. Nat Rev Drug Discovery. 2020;19(3):185–99. (PMID: 3190046210.1038/s41573-019-0051-2)
Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Translational Med. 2013;5(177):177ra38-177ra38. (PMID: 10.1126/scitranslmed.3005930)
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood J Am Soc Hematol. 2014;124(2):188–95.
Kandra P, Huber M, Kobold S, Seeger W, Savai R. Utility and drawbacks of chimeric antigen receptor T cell (CAR-T) therapy in lung cancer. Front Immunol. 2022;13: 903562. (PMID: 35720364920108310.3389/fimmu.2022.903562)
Pfefferle A, Huntington ND. You have got a fast CAR: chimeric antigen receptor NK cells in cancer therapy. Cancers. 2020;12(3):706. (PMID: 32192067714002210.3390/cancers12030706)
Wilson FP, Berns JS. Tumor lysis syndrome: new challenges and recent advances. Adv Chronic Kidney Dis. 2014;21(1):18–26. (PMID: 24359983401724610.1053/j.ackd.2013.07.001)
MacKay M, Afshinnekoo E, Rub J, Hassan C, Khunte M, Baskaran N, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38(2):233–44. (PMID: 3190740510.1038/s41587-019-0329-2)
Li H, Zhang M. Preclinical and clinical studies of CAR-NK-cell therapies for malignancies. Front Immunol. 2022;13: 992232. (PMID: 36353643963794010.3389/fimmu.2022.992232)
Romanski A, Uherek C, Bug G, Seifried E, Klingemann H, Wels WS, et al. CD 19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med. 2016;20(7):1287–94. (PMID: 27008316492930810.1111/jcmm.12810)
Quintarelli C, Sivori S, Caruso S, Carlomagno S, Falco M, Boffa I, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(4):1102–15. (PMID: 3174521510.1038/s41375-019-0613-7)
Müller S, Bexte T, Gebel V, Hartmann J, Schambach A, Modlich U, et al. High cytotoxic efficiency of lentivirally and alpharetrovirally engineered CD19-specific chimeric antigen receptor natural killer cells against acute lymphoblastic leukemia. Front Immunol. 2020;10: 485159. (PMID: 10.3389/fimmu.2019.03123)
Ng YY, Du Z, Zhang X, Chng WJ, Wang S. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther. 2022;29(5):475–83. (PMID: 3447123410.1038/s41417-021-00365-x)
Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 2014;8(2):297–310. (PMID: 2438835710.1016/j.molonc.2013.12.001)
Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 2014;28(4):917–27. (PMID: 2406749210.1038/leu.2013.279)
Chen KH, Wada M, Pinz KG, Liu H, Lin K-W, Jares A, et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia. 2017;31(10):2151–60. (PMID: 28074066562937110.1038/leu.2017.8)
You F, Wang Y, Jiang L, Zhu X, Chen D, Yuan L, et al. A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. Am J Cancer Res. 2019;9(1):64. (PMID: 307558126356925)
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan C-X, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 2022;41(1):119. (PMID: 35361234896938210.1186/s13046-022-02327-z)
Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Translational Immunol. 2021;10(4): e1274. (PMID: 10.1002/cti2.1274)
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer. 2023;22(1):20. (PMID: 36717905988570710.1186/s12943-023-01723-z)
Goldenson BH, Kaufman DS. iPSC-derived natural killer cell therapies-expansion and targeting. Front Immunol. 2022;13: 841107. (PMID: 35185932885138910.3389/fimmu.2022.841107)
Blanco P, Ueno H, Schmitt N. T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis. Eur J Immunol. 2016;46(2):281–90. (PMID: 2661410310.1002/eji.201545760)
Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol. 2009;9(12):845–57. (PMID: 1993580410.1038/nri2637)
Reighard SD, Cranert SA, Rangel KM, Ali A, Gyurova IE, de la Cruz-Lynch AT, et al. Therapeutic targeting of follicular T cells with chimeric antigen receptor-expressing natural killer cells. Cell Reports Medicine. 2020;1(1).
Meng H, Sun X, Song Y, Zou J, An G, Jin Z, et al. La/SSB chimeric autoantibody receptor modified NK92MI cells for targeted therapy of autoimmune disease. Clin Immunol. 2018;192:40–9. (PMID: 2967390210.1016/j.clim.2018.04.006)
Thurgood LA, Arentz G, Lindop R, Jackson MW, Whyte AF, Colella AD, et al. An immunodominant La/SSB autoantibody proteome derives from public clonotypes. Clin Exp Immunol. 2013;174(2):237–44. (PMID: 23841690382882710.1111/cei.12171)
Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 2021;28(9):513–27. (PMID: 33753909845532210.1038/s41434-021-00246-w)
Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev. 2002;188(1):147–54. (PMID: 1244528810.1034/j.1600-065X.2002.18813.x)
Harrison C. Calming the cytokine storm. Nat Rev Drug Discovery. 2010;9(5):360–1. (PMID: 2043156510.1038/nrd3162)
Cao B, Liu M, Wang L, Liang B, Feng Y, Chen X, et al. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem Biophys Res Commun. 2020;524(1):96–102. (PMID: 3198017310.1016/j.bbrc.2020.01.053)
Ni J, Wang X, Stojanovic A, Zhang Q, Wincher M, Bühler L, et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity. 2020;52(6):1075-87. e8. (PMID: 3244561910.1016/j.immuni.2020.05.001)
Włodarczyk M, Pyrzynska B. CAR-NK as a rapidly developed and efficient immunotherapeutic strategy against cancer. Cancers. 2022;15(1):117. (PMID: 36612114981794810.3390/cancers15010117)
Heipertz EL, Zynda ER, Kaur N, Vemuri MC. Current perspectives on “off-the-shelf” allogeneic NK and CAR-NK cell therapies. Front Immunol. 2021;12: 732135. (PMID: 34925314867116610.3389/fimmu.2021.732135)
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. (PMID: 25317870426753110.1056/NEJMoa1407222)
Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. (PMID: 29385370599639110.1056/NEJMoa1709866)
Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. (PMID: 29385376663793910.1056/NEJMoa1709919)
Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. (PMID: 29226764578856610.1056/NEJMoa1708566)
Garfall AL, Maus MV, Hwang W-T, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040–7. (PMID: 26352815464671110.1056/NEJMoa1504542)
Müller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann H-G, et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother. 2008;57:411–23. (PMID: 1771766210.1007/s00262-007-0383-3)
Oelsner S, Waldmann A, Billmeier A, Röder J, Lindner A, Ullrich E, et al. Genetically engineered CAR NK cells display selective cytotoxicity against FLT3-positive B-ALL and inhibit in vivo leukemia growth. Int J Cancer. 2019;145(7):1935–45. (PMID: 3086059810.1002/ijc.32269)
Chen KH, Wada M, Firor AE, Pinz KG, Jares A, Liu H, et al. Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget. 2016;7(35):56219. (PMID: 27494836530290910.18632/oncotarget.11019)
Kloess S, Kretschmer A, Stahl L, Fricke S, Koehl U. CAR-expressing natural killer cells for cancer retargeting. Transfusion Medicine and Hemotherapy. 2019;46(1):4–13. (PMID: 31244577655832910.1159/000495771)
Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59.
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545–53. (PMID: 32023374710124210.1056/NEJMoa1910607)
Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther. 2019;27(6):1114–25. (PMID: 30962163655452910.1016/j.ymthe.2019.03.011)
Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083. (PMID: 300349456048396)
Zhang X, Guo Y, Ji Y, Gao Y, Zhang M, Liu Y, et al. Cytokine release syndrome after modified CAR-NK therapy in an advanced non-small cell lung cancer patient: a case report. Cell Transplant. 2022;31:09636897221094244. (PMID: 35506155907312410.1177/09636897221094244)
Han D, Xu Z, Zhuang Y, Ye Z, Qian Q. Current progress in CAR-T cell therapy for hematological malignancies. J Cancer. 2021;12(2):326. (PMID: 33391429773898710.7150/jca.48976)
معلومات مُعتمدة: R.G.P.2/314/44 Deanship of Scientific Research, King Khalid University
فهرسة مساهمة: Keywords: CAR NK-cell; CAR T-cell; Cancer and autoimmune disease; Immunotherapy
المشرفين على المادة: 0 (Receptors, Chimeric Antigen)
تواريخ الأحداث: Date Created: 20240424 Date Completed: 20240424 Latest Revision: 20240613
رمز التحديث: 20240613
DOI: 10.1007/s12032-024-02362-0
PMID: 38656354
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-131X
DOI:10.1007/s12032-024-02362-0