دورية أكاديمية

Phylogenomics and the rise of the angiosperms.

التفاصيل البيبلوغرافية
العنوان: Phylogenomics and the rise of the angiosperms.
المؤلفون: Zuntini AR; Royal Botanic Gardens, Kew, Richmond, UK., Carruthers T; Royal Botanic Gardens, Kew, Richmond, UK., Maurin O; Royal Botanic Gardens, Kew, Richmond, UK., Bailey PC; Royal Botanic Gardens, Kew, Richmond, UK., Leempoel K; Royal Botanic Gardens, Kew, Richmond, UK., Brewer GE; Royal Botanic Gardens, Kew, Richmond, UK., Epitawalage N; Royal Botanic Gardens, Kew, Richmond, UK., Françoso E; Royal Botanic Gardens, Kew, Richmond, UK.; Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, London, UK., Gallego-Paramo B; Royal Botanic Gardens, Kew, Richmond, UK., McGinnie C; Royal Botanic Gardens, Kew, Richmond, UK., Negrão R; Royal Botanic Gardens, Kew, Richmond, UK., Roy SR; Royal Botanic Gardens, Kew, Richmond, UK., Simpson L; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia., Toledo Romero E; Royal Botanic Gardens, Kew, Richmond, UK., Barber VMA; Royal Botanic Gardens, Kew, Richmond, UK., Botigué L; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain., Clarkson JJ; Royal Botanic Gardens, Kew, Richmond, UK., Cowan RS; Royal Botanic Gardens, Kew, Richmond, UK., Dodsworth S; School of Biological Sciences, University of Portsmouth, Portsmouth, UK., Johnson MG; Texas Tech University, Lubbock, TX, USA., Kim JT; School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK., Pokorny L; Royal Botanic Gardens, Kew, Richmond, UK.; Department of Biodiversity and Conservation, Real Jardín Botánico (RJB-CSIC), Madrid, Spain., Wickett NJ; Department of Biological Sciences, Clemson University, Clemson, SC, USA., Antar GM; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.; Departamento de Ciências Agrárias e Biológicas, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, Brazil., DeBolt L; Smith College, Northampton, MA, USA., Gutierrez K; Smith College, Northampton, MA, USA., Hendriks KP; Department of Biology, University of Osnabrück, Osnabrück, Germany.; Naturalis Biodiversity Center, Leiden, The Netherlands., Hoewener A; Plant Biodiversity, Technical University Munich, Freising, Germany., Hu AQ; Royal Botanic Gardens, Kew, Richmond, UK., Joyce EM; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia.; Systematic, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, Munich, Germany., Kikuchi IABS; Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada., Larridon I; Royal Botanic Gardens, Kew, Richmond, UK., Larson DA; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA., de Lírio EJ; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil., Liu JX; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China., Malakasi P; Royal Botanic Gardens, Kew, Richmond, UK., Przelomska NAS; Royal Botanic Gardens, Kew, Richmond, UK.; School of Biological Sciences, University of Portsmouth, Portsmouth, UK., Shah T; Royal Botanic Gardens, Kew, Richmond, UK., Viruel J; Royal Botanic Gardens, Kew, Richmond, UK., Allnutt TR; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., Ameka GK; Department of Plant and Environmental Biology, University of Ghana, Accra, Ghana., Andrew RL; Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia., Appelhans MS; Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany., Arista M; Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain., Ariza MJ; General Research Services, Herbario SEV, CITIUS, Universidad de Sevilla, Seville, Spain., Arroyo J; Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain., Arthan W; Royal Botanic Gardens, Kew, Richmond, UK., Bachelier JB; Institute of Biology, Freie Universität, Berlin, Germany., Bailey CD; Department of Biology, New Mexico State University, Las Cruces, NM, USA., Barnes HF; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., Barrett MD; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia., Barrett RL; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Bayer RJ; Department of Biological Sciences, University of Memphis, Memphis, TN, USA., Bayly MJ; School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia., Biffin E; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia., Biggs N; Royal Botanic Gardens, Kew, Richmond, UK., Birch JL; School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia., Bogarín D; Naturalis Biodiversity Center, Leiden, The Netherlands.; Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica., Borosova R; Royal Botanic Gardens, Kew, Richmond, UK., Bowles AMC; School of Geographical Sciences, University of Bristol, Bristol, UK., Boyce PC; Centro Studi Erbario Tropicale, Dipartimento di Biologia, University of Florence, Florence, Italy., Bramley GLC; Royal Botanic Gardens, Kew, Richmond, UK., Briggs M; Royal Botanic Gardens, Kew, Richmond, UK., Broadhurst L; Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia., Brown GK; Queensland Herbarium and Biodiversity Science, Brisbane Botanic Gardens, Toowong, Queensland, Australia., Bruhl JJ; Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia., Bruneau A; Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, University of Montreal, Montreal, Quebec, Canada., Buerki S; Department of Biological Sciences, Boise State University, Boise, ID, USA., Burns E; Royal Botanic Gardens, Kew, Richmond, UK., Byrne M; Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia., Cable S; Royal Botanic Gardens, Kew, Richmond, UK., Calladine A; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia., Callmander MW; Conservatoire et Jardin Botaniques de Genève, Chambésy, Switzerland., Cano Á; Cambridge University Botanic Garden, Cambridge, UK., Cantrill DJ; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., Cardinal-McTeague WM; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada., Carlsen MM; Missouri Botanical Garden, St. Louis, MO, USA., Carruthers AJA; Royal Botanic Gardens, Kew, Richmond, UK., de Castro Mateo A; Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain., Chase MW; Royal Botanic Gardens, Kew, Richmond, UK.; Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia., Chatrou LW; Department of Biology, Ghent University, Ghent, Belgium., Cheek M; Royal Botanic Gardens, Kew, Richmond, UK., Chen S; Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China.; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China., Christenhusz MJM; Royal Botanic Gardens, Kew, Richmond, UK.; Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia.; Plant Gateway, Den Haag, The Netherlands., Christin PA; Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK., Clements MA; Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia., Coffey SC; Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia., Conran JG; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia., Cornejo X; Herbario GUAY, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador., Couvreur TLP; DIADE, Université Montpellier, CIRAD IRD, Montpellier, France., Cowie ID; Northern Territory Herbarium Department of Environment Parks & Water Security, Northern Territory Government, Palmerston, Northern Territory, Australia., Csiba L; Royal Botanic Gardens, Kew, Richmond, UK., Darbyshire I; Royal Botanic Gardens, Kew, Richmond, UK., Davidse G; Missouri Botanical Garden, St. Louis, MO, USA., Davies NMJ; Royal Botanic Gardens, Kew, Richmond, UK., Davis AP; Royal Botanic Gardens, Kew, Richmond, UK., van Dijk KJ; The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia., Downie SR; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA., Duretto MF; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Duvall MR; Department of Biological Sciences and Institute for the Study of the Environment, Sustainability and Energy, Northern Illinois University, DeKalb, IL, USA., Edwards SL; Royal Botanic Gardens, Kew, Richmond, UK., Eggli U; Sukkulenten-Sammlung Zürich/ Grün Stadt Zürich, Zürich, Switzerland., Erkens RHJ; Naturalis Biodiversity Center, Leiden, The Netherlands.; Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands.; System Earth Science, Maastricht University, Venlo, The Netherlands., Escudero M; Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain., de la Estrella M; Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain., Fabriani F; Department of Biology, Ghent University, Ghent, Belgium., Fay MF; Royal Botanic Gardens, Kew, Richmond, UK., Ferreira PL; Departamento de Biologia, Faculdade de Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.; Department of Biology, Aarhus University, Aarhus, Denmark., Ficinski SZ; Royal Botanic Gardens, Kew, Richmond, UK., Fowler RM; School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia., Frisby S; Royal Botanic Gardens, Kew, Richmond, UK., Fu L; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China., Fulcher T; Royal Botanic Gardens, Kew, Richmond, UK., Galbany-Casals M; Systematics and Evolution of Vascular Plants (UAB)-Associated Unit to CSIC by IBB, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain., Gardner EM; Department of Biology, Case Western Reserve University, Cleveland, OH, USA., German DA; Altai State University, Barnaul, Russia., Giaretta A; Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil., Gibernau M; Laboratoire Sciences Pour l'Environnement, Université de Corse, Ajaccio, France., Gillespie LJ; Canadian Museum of Nature, Ottawa, Ontario, Canada., González CC; Herbario Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina., Goyder DJ; Royal Botanic Gardens, Kew, Richmond, UK., Graham SW; Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada., Grall A; Royal Botanic Gardens, Kew, Richmond, UK., Green L; Royal Botanic Gardens, Kew, Richmond, UK., Gunn BF; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., Gutiérrez DG; Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina., Hackel J; Royal Botanic Gardens, Kew, Richmond, UK.; Department of Biology, Universität Marburg, Marburg, Germany., Haevermans T; Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France., Haigh A; Royal Botanic Gardens, Kew, Richmond, UK., Hall JC; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada., Hall T; Royal Botanic Gardens, Kew, Richmond, UK., Harrison MJ; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia., Hatt SA; Royal Botanic Gardens, Kew, Richmond, UK., Hidalgo O; Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain., Hodkinson TR; Botany, School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland., Holmes GD; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., Hopkins HCF; Royal Botanic Gardens, Kew, Richmond, UK., Jackson CJ; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., James SA; Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia., Jobson RW; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Kadereit G; Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, Botanische Staatssammlung München, Botanischer Garten München-Nymphenburg, Munich, Germany., Kahandawala IM; Royal Botanic Gardens, Kew, Richmond, UK., Kainulainen K; Gothenburg Botanical Garden, Gothenburg, Sweden., Kato M; National Museum of Nature and Science, Tsukuba, Japan., Kellogg EA; Donald Danforth Plant Science Center, St. Louis, MO, USA., King GJ; Southern Cross University, Lismore, New South Wales, Australia., Klejevskaja B; Synergy SRG, Luton, UK., Klitgaard BB; Royal Botanic Gardens, Kew, Richmond, UK., Klopper RR; Foundational Biodiversity Science Division, South African National Biodiversity Institute, Pretoria, South Africa.; Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa., Knapp S; Natural History Museum, London, UK., Koch MA; Centre for Organismal Studies, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany., Leebens-Mack JH; Department of Plant Biology, University of Georgia, Athens, GA, USA., Lens F; Naturalis Biodiversity Center, Leiden, The Netherlands., Leon CJ; Royal Botanic Gardens, Kew, Richmond, UK., Léveillé-Bourret É; Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, Quebec, Canada., Lewis GP; Royal Botanic Gardens, Kew, Richmond, UK., Li DZ; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China., Li L; CSIRO, Canberra, Australian Capital Territory, Australia., Liede-Schumann S; Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany., Livshultz T; Department of Biodiversity, Earth and Environmental Sciences, Drexel University, Philadelphia, PA, USA.; Academy of Natural Science, Drexel University, Philadelphia, PA, USA., Lorence D; National Tropical Botanical Garden, Kalaheo, HI, USA., Lu M; Royal Botanic Gardens, Kew, Richmond, UK., Lu-Irving P; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Luber J; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil., Lucas EJ; Royal Botanic Gardens, Kew, Richmond, UK., Luján M; Royal Botanic Gardens, Kew, Richmond, UK., Lum M; Bioplatforms Australia Ltd, Sydney, New South Wales, Australia., Macfarlane TD; Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia., Magdalena C; Royal Botanic Gardens, Kew, Richmond, UK., Mansano VF; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil., Masters LE; Royal Botanic Gardens, Kew, Richmond, UK., Mayo SJ; Royal Botanic Gardens, Kew, Richmond, UK., McColl K; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., McDonnell AJ; Department of Biological Sciences, Saint Cloud State University, Saint Cloud, MN, USA., McDougall AE; The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia., McLay TGB; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., McPherson H; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Meneses RI; Instituto de Arqueología y Antropología, Universidad Católica del Norte, San Pedro de Atacama, Chile., Merckx VSFT; Naturalis Biodiversity Center, Leiden, The Netherlands., Michelangeli FA; New York Botanical Garden, Bronx, NY, USA., Mitchell JD; New York Botanical Garden, Bronx, NY, USA., Monro AK; Royal Botanic Gardens, Kew, Richmond, UK., Moore MJ; Department of Biology, Oberlin College, Oberlin, OH, USA., Mueller TL; Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA., Mummenhoff K; Department of Biology, University of Osnabrück, Osnabrück, Germany., Munzinger J; AMAP Lab, Université Montpellier, IRD, CIRAD, CNRS INRAE, Montpellier, France., Muriel P; Laboratorio de Ecofisiología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador., Murphy DJ; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., Nargar K; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia.; Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia., Nauheimer L; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia., Nge FJ; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia., Nyffeler R; Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland., Orejuela A; Royal Botanic Garden Edinburgh, Edinburgh, UK.; Grupo de Investigación en Recursos Naturales Amazónicos, Instituto Tecnológico del Putumayo, Mocoa, Colombia., Ortiz EM; Plant Biodiversity, Technical University Munich, Freising, Germany., Palazzesi L; Museo Argentino de Ciencias Naturales (MACN-CONICET), Buenos Aires, Argentina., Peixoto AL; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil., Pell SK; US Botanic Garden, Washington, DC, USA., Pellicer J; Institut Botànic de Barcelona (IBB CSIC-Ajuntament de Barcelona), Barcelona, Spain., Penneys DS; Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA., Perez-Escobar OA; Royal Botanic Gardens, Kew, Richmond, UK., Persson C; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden., Pignal M; Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, Paris, France., Pillon Y; LSTM Université Montpellier, CIRADIRD, Montpellier, France., Pirani JR; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil., Plunkett GM; New York Botanical Garden, Bronx, NY, USA., Powell RF; Royal Botanic Gardens, Kew, Richmond, UK., Prance GT; Royal Botanic Gardens, Kew, Richmond, UK., Puglisi C; Royal Botanic Gardens, Kew, Richmond, UK.; Missouri Botanical Garden, St. Louis, MO, USA., Qin M; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China., Rabeler RK; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA., Rees PEJ; Royal Botanic Gardens, Kew, Richmond, UK., Renner M; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Roalson EH; School of Biological Sciences, Washington State University, Pullman, WA, USA., Rodda M; National Parks Board, Singapore Botanic Gardens, Singapore, Singapore., Rogers ZS; New Mexico State University, Las Cruces, NM, USA., Rokni S; Royal Botanic Gardens, Kew, Richmond, UK., Rutishauser R; Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland., de Salas MF; Tasmanian Herbarium, University of Tasmania, Sandy Bay, Tasmania, Australia., Schaefer H; Plant Biodiversity, Technical University Munich, Freising, Germany., Schley RJ; University of Exeter, Exeter, UK., Schmidt-Lebuhn A; Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia., Shapcott A; School of Science Technology and Engineering, Center for Bioinnovation, University Sunshine Coast, Sippy Downs, Queensland, Australia., Al-Shehbaz I; Missouri Botanical Garden, St. Louis, MO, USA., Shepherd KA; Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Government of Western Australia, Kensington, Western Australia, Australia., Simmons MP; Department of Biology, Colorado State University, Fort Collins, CO, USA., Simões AO; Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, Brazil., Simões ARG; Royal Botanic Gardens, Kew, Richmond, UK., Siros M; Royal Botanic Gardens, Kew, Richmond, UK.; University of California, San Francisco, San Francisco, CA, USA., Smidt EC; Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil., Smith JF; Department of Biological Sciences, Boise State University, Boise, ID, USA., Snow N; Pittsburg State University, Pittsburg, KS, USA., Soltis DE; Florida Museum of Natural History, University of Florida, Gainesville, FL, USA., Soltis PS; Florida Museum of Natural History, University of Florida, Gainesville, FL, USA., Soreng RJ; Smithsonian Institution, Washington, DC, USA., Sothers CA; Royal Botanic Gardens, Kew, Richmond, UK., Starr JR; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada., Stevens PF; Missouri Botanical Garden, St. Louis, MO, USA., Straub SCK; Hobart and William Smith Colleges, Geneva, NY, USA., Struwe L; Rutgers University, New Brunswick, NJ, USA., Taylor JM; CSIRO, Canberra, Australian Capital Territory, Australia., Telford IRH; Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia., Thornhill AH; Botany and N.C.W. Beadle Herbarium, University of New England, Armidale, New South Wales, Australia.; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia.; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia., Tooth I; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Trias-Blasi A; Royal Botanic Gardens, Kew, Richmond, UK., Udovicic F; Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia., Utteridge TMA; Royal Botanic Gardens, Kew, Richmond, UK., Del Valle JC; Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Seville, Spain., Verboom GA; Department of Biological Sciences and Bolus Herbarium, University of Cape Town, Cape Town, South Africa., Vonow HP; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia., Vorontsova MS; Royal Botanic Gardens, Kew, Richmond, UK., de Vos JM; Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland., Al-Wattar N; Royal Botanic Gardens, Kew, Richmond, UK., Waycott M; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, South Australia, Australia.; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia., Welker CAD; Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil., White AJ; Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia., Wieringa JJ; Naturalis Biodiversity Center, Leiden, The Netherlands., Williamson LT; The University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia., Wilson TC; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Wong SY; Institute of Biodiversity And Environmental Conservation, Universiti Malaysia Sarawak, Samarahan, Malaysia., Woods LA; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Woods R; Royal Botanic Gardens, Kew, Richmond, UK., Worboys S; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia., Xanthos M; Royal Botanic Gardens, Kew, Richmond, UK., Yang Y; University of Minnesota-Twin Cities, St. Paul, MN, USA., Zhang YX; Southwest Forestry University, Kunming, China., Zhou MY; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China., Zmarzty S; Royal Botanic Gardens, Kew, Richmond, UK., Zuloaga FO; Instituto de Botánica Darwinion, San Isidro, Argentina., Antonelli A; Royal Botanic Gardens, Kew, Richmond, UK.; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.; Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden.; Department of Biology, University of Oxford, Oxford, UK., Bellot S; Royal Botanic Gardens, Kew, Richmond, UK., Crayn DM; Australian Tropical Herbarium, James Cook University, Smithfield, Queensland, Australia., Grace OM; Royal Botanic Gardens, Kew, Richmond, UK.; Royal Botanic Garden Edinburgh, Edinburgh, UK., Kersey PJ; Royal Botanic Gardens, Kew, Richmond, UK., Leitch IJ; Royal Botanic Gardens, Kew, Richmond, UK., Sauquet H; National Herbarium of NSW, Botanic Gardens of Sydney, Mount Annan, New South Wales, Australia., Smith SA; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA., Eiserhardt WL; Royal Botanic Gardens, Kew, Richmond, UK.; Department of Biology, Aarhus University, Aarhus, Denmark., Forest F; Royal Botanic Gardens, Kew, Richmond, UK., Baker WJ; Royal Botanic Gardens, Kew, Richmond, UK. w.baker@kew.org.; Department of Biology, Aarhus University, Aarhus, Denmark. w.baker@kew.org.
المصدر: Nature [Nature] 2024 May; Vol. 629 (8013), pp. 843-850. Date of Electronic Publication: 2024 Apr 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Genes, Plant*/genetics , Genomics* , Magnoliopsida*/genetics , Magnoliopsida*/classification , Phylogeny* , Evolution, Molecular*, Fossils ; Nuclear Proteins/genetics
مستخلص: Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods 1,2 . A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome 3,4 . Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins 5-7 . However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes 8 . This 15-fold increase in genus-level sampling relative to comparable nuclear studies 9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
(© 2024. The Author(s).)
References: Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002). (PMID: 1216787810.1038/nature01019)
Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021). (PMID: 34389730836367010.1038/s41597-021-00997-6)
Chase, M. W. et al. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri. Bot. Gard. 80, 528–580 (1993). (PMID: 10.2307/2399846)
Li, H.-T. et al. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 19, 232 (2021). (PMID: 34711223855532210.1186/s12915-021-01166-2)
Ramírez-Barahona, S., Sauquet, H. & Magallón, S. The delayed and geographically heterogeneous diversification of flowering plant families. Nat. Ecol. Evol. 4, 1232–1238 (2020). (PMID: 3263226010.1038/s41559-020-1241-3)
Li, H.-T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 5, 461–470 (2019). (PMID: 3106153610.1038/s41477-019-0421-0)
Dimitrov, D. et al. Diversification of flowering plants in space and time. Nat. Commun. 14, 7609 (2023). (PMID: 379934491066546510.1038/s41467-023-43396-8)
Johnson, M. G. et al. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Syst. Biol. 68, 594–606 (2019). (PMID: 3053539410.1093/sysbio/syy086)
One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019). (PMID: 10.1038/s41586-019-1693-2)
Barba-Montoya, J., dos Reis, M., Schneider, H., Donoghue, P. C. J. & Yang, Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytol. 218, 819–834 (2018). (PMID: 29399804605584110.1111/nph.15011)
Doyle, J. A. Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet. Sci. 40, 301–326 (2012). (PMID: 10.1146/annurev-earth-042711-105313)
Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018). (PMID: 29679005591039110.1038/s41467-018-03950-1)
Pennington, R. T., Cronk, Q. C. B. & Richardson, J. A. Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos. Trans. R. Soc. Lond. B 359, 1455–1464 (2004). (PMID: 10.1098/rstb.2004.1539)
Benton, M. J., Wilf, P. & Sauquet, H. The Angiosperm terrestrial revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035 (2022). (PMID: 3469961310.1111/nph.17822)
Dodsworth, S. et al. Hyb-Seq for flowering plant systematics. Trends Plant Sci. 24, 887–891 (2019). (PMID: 3147740910.1016/j.tplants.2019.07.011)
Brewer, G. E. et al. Factors affecting targeted sequencing of 353 nuclear genes from herbarium specimens spanning the diversity of angiosperms. Front. Plant Sci. 10, 1102 (2019). (PMID: 31620145675968810.3389/fpls.2019.01102)
Baker, W. J. et al. Exploring Angiosperms353: an open, community toolkit for collaborative phylogenomic research on flowering plants. Am. J. Bot. 108, 1059–1065 (2021). (PMID: 3429317910.1002/ajb2.1703)
The Angiosperm Phylogeny Group. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016). (PMID: 10.1111/boj.12385)
Joyce, E. M. et al. Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification and heterogeneous histories of gene duplication. Front. Plant Sci. 14, 1063174 (2023). (PMID: 369599451002810110.3389/fpls.2023.1063174)
Yan, Z., Smith, M. L., Du, P., Hahn, M. W. & Nakhleh, L. Species tree inference methods intended to deal with iIncomplete lineage sorting are robust to the presence of paralogs. Syst. Biol. 71, 367–381 (2022). (PMID: 3424529110.1093/sysbio/syab056)
Watanabe, T., Kure, A. & Horiike, T. OrthoPhy: a program to construct ortholog data sets using taxonomic information. Genome Biol. Evol. 15, evad026 (2023). (PMID: 36799928999159510.1093/gbe/evad026)
Ruhfel, B. R., Gitzendanner, M. A., Soltis, P. S., Soltis, D. E. & Burleigh, J. G. From algae to angiosperms—inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14, 23 (2014). (PMID: 24533922393318310.1186/1471-2148-14-23)
Endress, P. K. Origins of flower morphology. J. Exp. Zool. 291, 105–115 (2001). (PMID: 1147991210.1002/jez.1063)
Stull, G. W., Duno de Stefano, R., Soltis, D. E. & Soltis, P. S. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Am. J. Bot. 102, 1794–1813 (2015). (PMID: 2650711210.3732/ajb.1500298)
Soltis, D. E. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA 92, 2647–2651 (1995). (PMID: 77086994227510.1073/pnas.92.7.2647)
Walker, J. F. et al. From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. Am. J. Bot. 105, 446–462 (2018). (PMID: 2973807610.1002/ajb2.1069)
Guo, X. et al. Chloranthus genome provides insights into the early diversification of angiosperms. Nat. Commun. 12, 6930 (2021). (PMID: 34836973862647310.1038/s41467-021-26922-4)
Sauquet, H., Ramírez-Barahona, S. & Magallón, S. What is the age of flowering plants? J. Exp. Bot. 73, 3840–3853 (2022). (PMID: 3543871810.1093/jxb/erac130)
Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 105, 348–363 (2018). (PMID: 2971904310.1002/ajb2.1060)
Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207, 454–467 (2015). (PMID: 2605326110.1111/nph.13491)
Darwin, C. The Correspondence of Charles Darwin (Cambridge Univ. Press, 1879).
Buggs, R. J. A. Reconfiguring Darwin’s abominable mystery. Nat. Plants 8, 194–195 (2022). (PMID: 3524182810.1038/s41477-022-01117-x)
Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 223, 83–99 (2019). (PMID: 3068114810.1111/nph.15708)
Herendeen, P. S., Friis, E. M., Pedersen, K. R. & Crane, P. R. Palaeobotanical redux: revisiting the age of the angiosperms. Nat. Plants 3, 17015 (2017).
Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).
Davies, T. J. et al. Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA 101, 1904–1909 (2004). (PMID: 1476697135702510.1073/pnas.0308127100)
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015). (PMID: 2561564710.1111/nph.13264)
Mathews, S. & Donoghue, M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999). (PMID: 1054214710.1126/science.286.5441.947)
Dilcher, D. Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. Proc. Natl Acad. Sci. USA 97, 7030–7036 (2000). (PMID: 108609673438010.1073/pnas.97.13.7030)
Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011). (PMID: 2194086110.1126/science.1211028)
Bouchenak-Khelladi, Y., Onstein, R. E., Xing, Y., Schwery, O. & Linder, H. P. On the complexity of triggering evolutionary radiations. New Phytol. 207, 313–326 (2015). (PMID: 2569058210.1111/nph.13331)
Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation and depauperons in plant diversification. New Phytol. 207, 260–274 (2015). (PMID: 2577869410.1111/nph.13367)
Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019). (PMID: 3037604010.1093/aob/mcy182)
Rabosky, D. L. Diversity-dependence, ecological speciation and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013). (PMID: 10.1146/annurev-ecolsys-110512-135800)
Asar, Y., Ho, S. Y. W. & Sauquet, H. Early diversifications of angiosperms and their insect pollinators: were they unlinked? Trends Plant Sci. 27, 858–869 (2022). (PMID: 3556862210.1016/j.tplants.2022.04.004)
Peris, D. & Condamine, F. L. The dual role of the angiosperm radiation on insect diversification. Nat. Commun. 15, 552 (2024).
Folk, R. A. et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proc. Natl Acad. Sci. USA 116, 10874–10882 (2019). (PMID: 31085636656117410.1073/pnas.1817999116)
Sun, M. et al. Recent accelerated diversification in rosids occurred outside the tropics. Nat. Commun. 11, 3333 (2020). (PMID: 32620894733516510.1038/s41467-020-17116-5)
Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B 286, 20190099 (2019). (PMID: 645206210.1098/rspb.2019.0099)
Baker, W. J. et al. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Syst. Biol. 71, 301–319 (2022). (PMID: 3398344010.1093/sysbio/syab035)
McDonnell, A. J. et al. Exploring Angiosperms353: developing and applying a universal toolkit for flowering plant phylogenomics. Appl. Plant Sci. 9, e11443 (2021).
Bratzel, F. et al. Target-enrichment sequencing reveals for the first time a well-resolved phylogeny of the core Bromelioideae (family Bromeliaceae). TAXON 72, 47–63 (2023). (PMID: 10.1002/tax.12831)
Gagnon, E. et al. Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. Am. J. Bot. 109, 580–601 (2022). (PMID: 35170754932196410.1002/ajb2.1827)
Murillo-A, J., Valencia-D, J., Orozco, C. I., Parra-O, C. & Neubig, K. M. Incomplete lineage sorting and reticulate evolution mask species relationships in Brunelliaceae, an Andean family with rapid, recent diversification. Am. J. Bot. 109, 1139–1156 (2022). (PMID: 3570935310.1002/ajb2.16025)
Zuntini, A.R. & Carruthers, T. Phylogenomics and the rise of the angiosperms. Zenodo https://doi.org/10.5281/zenodo.10778206 (2024).
Hendriks, K. P. et al. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr. Biol 33, 4052–4068 (2023).
Chen, L.-Y. et al. Phylogenomic analyses of Alismatales shed light into adaptations to aquatic environments. Mol. Biol. Evol. 39, msac079 (2022). (PMID: 35438770907083710.1093/molbev/msac079)
Timilsena, P. R. et al. Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes. Front. Plant Sci. 13, 876779 (2022). (PMID: 36483967972315710.3389/fpls.2022.876779)
Ogutcen, E. et al. Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. Mol. Phylogenet. Evol. 157, 107068 (2021). (PMID: 3342264810.1016/j.ympev.2021.107068)
Yardeni, G. et al. Taxon-specific or universal? Using target capture to study the evolutionary history of rapid radiations. Mol. Ecol. Resour. 22, 927–945 (2022). (PMID: 3460668310.1111/1755-0998.13523)
Johnson, M. G. et al. HybPiper: extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Appl. Plant Sci. 4, 1600016 (2016). (PMID: 10.3732/apps.1600016)
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170)
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). (PMID: 22506599334251910.1089/cmb.2012.0021)
Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005). (PMID: 1571323355396910.1186/1471-2105-6-31)
Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). (PMID: 23329690360331810.1093/molbev/mst010)
Smith, S. A. & Dunn, C. W. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715–716 (2008). (PMID: 1822712010.1093/bioinformatics/btm619)
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020). (PMID: 32011700718220610.1093/molbev/msaa015)
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). (PMID: 2907790410.1093/molbev/msx281)
Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19, 272 (2018). (PMID: 29745847599888310.1186/s12864-018-4620-2)
Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153 (2018). (PMID: 29745866599889310.1186/s12859-018-2129-y)
Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26, 1669–1670 (2010). (PMID: 20472542288705010.1093/bioinformatics/btq243)
Borowiec, M. L. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4, e1660 (2016). (PMID: 26835189473405710.7717/peerj.1660)
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010). (PMID: 20224823283573610.1371/journal.pone.0009490)
Yin, J., Zhang, C. & Mirarab, S. ASTRAL-MP: scaling ASTRAL to very large datasets using randomization and parallelization. Bioinformatics 35, 3961–3969 (2019). (PMID: 3090368510.1093/bioinformatics/btz211)
Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002). (PMID: 1175219510.1093/oxfordjournals.molbev.a003974)
Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012). (PMID: 2290821610.1093/bioinformatics/bts492)
Smith, S. A., Brown, J. W. & Walker, J. F. So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS ONE 13, e0197433 (2018). (PMID: 29772020595740010.1371/journal.pone.0197433)
Britton, T. Estimating divergence times in phylogenetic trees without a molecular vlock. Syst. Biol. 54, 500–507 (2005). (PMID: 1601211510.1080/10635150590947311)
Carruthers, T. et al. The implications of incongruence between gene tree and species tree topologies for divergence time estimation. Syst. Biol. 71, 1124–1146 (2022). (PMID: 35167690936646310.1093/sysbio/syac012)
Gomez, B., Daviero-Gomez, V., Coiffard, C., Martín-Closas, C. & Dilcher, D. L. Montsechia, an ancient aquatic angiosperm. Proc. Natl Acad. Sci. USA 112, 10985–10988 (2015). (PMID: 26283347456825410.1073/pnas.1509241112)
Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016). (PMID: 27235697491194210.1093/sysbio/syw021)
Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020). (PMID: 3232206510.1038/s41586-020-2176-1)
Rabosky, D. L. Automatic detection of key innovations, rate shifts and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014). (PMID: 24586858393587810.1371/journal.pone.0089543)
Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014). (PMID: 10.1111/2041-210X.12199)
المشرفين على المادة: 0 (Nuclear Proteins)
تواريخ الأحداث: Date Created: 20240424 Date Completed: 20240522 Latest Revision: 20240604
رمز التحديث: 20240604
مُعرف محوري في PubMed: PMC11111409
DOI: 10.1038/s41586-024-07324-0
PMID: 38658746
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07324-0