دورية أكاديمية

Metabolomics captures the differential metabolites in the replication pathway of snakehead vesiculovirus regulated by glutamine.

التفاصيل البيبلوغرافية
العنوان: Metabolomics captures the differential metabolites in the replication pathway of snakehead vesiculovirus regulated by glutamine.
المؤلفون: Sun B; School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China., Zhang Y; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China., Chen K; School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China., Sun L; School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China.
المصدر: Diseases of aquatic organisms [Dis Aquat Organ] 2024 Apr 25; Vol. 158, pp. 101-114. Date of Electronic Publication: 2024 Apr 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Inter-Research Country of Publication: Germany NLM ID: 8807037 Publication Model: Electronic Cited Medium: Print ISSN: 0177-5103 (Print) Linking ISSN: 01775103 NLM ISO Abbreviation: Dis Aquat Organ Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oldendorf/Luhe, Federal Republic of Germany : Inter-Research, c1985-
مواضيع طبية MeSH: Glutamine*/metabolism , Virus Replication* , Vesiculovirus*/physiology, Animals ; Fish Diseases/virology ; Metabolomics ; Cell Line ; Ictaluridae
مستخلص: Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.
فهرسة مساهمة: Keywords: Glutamine-deprived; Metabolomics; Snakehead fish; Snakehead vesiculovirus; Ultra-high-performance liquid chromatography
المشرفين على المادة: 0RH81L854J (Glutamine)
تواريخ الأحداث: Date Created: 20240425 Date Completed: 20240425 Latest Revision: 20240425
رمز التحديث: 20240425
DOI: 10.3354/dao03786
PMID: 38661141
قاعدة البيانات: MEDLINE
الوصف
تدمد:0177-5103
DOI:10.3354/dao03786