دورية أكاديمية

A Chronic Aquatic Hazard Assessment for the Perfume Raw Material Octahydro-tetramethyl-naphthalenyl-ethanone.

التفاصيل البيبلوغرافية
العنوان: A Chronic Aquatic Hazard Assessment for the Perfume Raw Material Octahydro-tetramethyl-naphthalenyl-ethanone.
المؤلفون: Lapczynski A; Research Institute for Fragrance Materials, Mahwah, New Jersey, USA., Belanger SE; The Procter & Gamble Company (retired), Cincinnati, Ohio, USA., Connors K; Environmental Stewardship and Sustainability, The Procter and Gamble Company, Mason, Ohio, USA., Bozich J; International Flavors and Fragrances, New York, New York, USA.
المصدر: Environmental toxicology and chemistry [Environ Toxicol Chem] 2024 Jun; Vol. 43 (6), pp. 1378-1389. Date of Electronic Publication: 2024 Apr 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: SETAC Press Country of Publication: United States NLM ID: 8308958 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-8618 (Electronic) Linking ISSN: 07307268 NLM ISO Abbreviation: Environ Toxicol Chem Subsets: MEDLINE
أسماء مطبوعة: Publication: Pensacola, FL : SETAC Press
Original Publication: New York : Pergamon Press, c1982-
مواضيع طبية MeSH: Water Pollutants, Chemical*/toxicity , Naphthalenes*/toxicity , Naphthalenes*/chemistry, Animals ; Risk Assessment ; Daphnia/drug effects ; Perfume/toxicity ; Toxicity Tests, Chronic ; Chironomidae/drug effects ; Zebrafish ; Cladocera/drug effects
مستخلص: Octahydro-tetramethyl-naphthalenyl-ethanone (OTNE) is a high-production volume fragrance material used in various down-the-drain consumer products. To assess aquatic risk, the Research Institute for Fragrance Materials (RIFM) uses a tiered data-driven framework to determine a risk characterization ratio, where the ratio of the predicted-environmental concentration to the predicted-no-effect concentration (PNEC) of <1 indicates an acceptable level of risk. Owing to its high production volume and the conservative nature of the RIFM framework, RIFM identified the need to utilize a species sensitivity distribution (SSD) approach to reduce the PNEC uncertainty for OTNE. Adding to the existing Daphnia magna, Danio rerio, and Desmodesmus subspicatus chronic studies, eight new chronic toxicity studies were conducted on the following species: Navicula pelliculosa, Chironomus riparius, Lemna gibba, Ceriodaphnia dubia, Hyalella azteca, Pimephales promelas, Anabaena flos-aquae, and Daphnia pulex. All toxicity data were summarized as chronic 10% effect concentration estimates using the most sensitive biological response. Daphnia magna was the most sensitive (0.032 mg/L), and D. subspicatus was the least sensitive (>2.6 mg/L, the OTNE solubility limit). The 5th percentile hazardous concentration (HC5) derived from the cumulative probability distribution of the chronic toxicity values for the 11 species was determined to be 0.0498 mg/L (95% confidence interval 0.0097-0.1159 mg/L). A series of "leave-one-out" and "add-one-in" simulations indicated the SSD was stable and robust. Add-one-in simulations determined that the probability of finding a species sensitive enough to lower the HC5 two- or threefold was 1/504 and 1/15,300, respectively. Given the high statistical confidence in this robust SSD, an additional application factor protection is likely not necessary. Nevertheless, to further ensure the protection of the environment, an application factor of 2 to the HC5, resulting in a PNEC of 0.0249 mg/L, is recommended. When combined with environmental exposure information, the overall hazard assessment is suitable for a probabilistic environmental risk assessment. Environ Toxicol Chem 2024;43:1378-1389. © 2024 SETAC.
(© 2024 SETAC.)
References: Anastassiadou, M., Brancato, A., Brocca, D., Carrasco Cabrera, L., Ferreira, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Lostia, A., Oriol Magrans, J., Medina, P., Miron, I., Pedersen, R., Raczyk, M., Reich, H., Ruocco, S., Sacchi, A., Santos, M., … Veran, A. (2019). Reporting data on pesticide residues in food and feed according to Regulation (EC) No 396/2005 (2018 data collection). EFSA Journal, 17, Article e05655. https://doi.org/10.2903/j.efsa.2019.5655.
ASTM International. (2010). Standard method for measuring the toxicity and bioaccumulation of sediment‐associated contaminants with freshwater invertebrates (Standard E1706‐05). https://doi.org/10.1520/E1706-05.
ASTM International. (2013). Standard guide for conducting 3‐brood, renewal toxicity test with Ceriodaphnia dubia (Standard E1295‐01).
Awkerman, J., Raimondo, S., Jackson, C. R., & Barron, M. G. (2014). Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models. Environmental Toxicology and Chemistry, 33, 688–695. https://doi.org/10.1002/etc.2456.
Beasley, A., Brill, J. L., Belanger, S. E., & Otter, R. R. (2015). Evaluation and comparison of the relationship between NOEC and EC10/EC20 values in chronic Daphnia toxicity testing. Environmental Toxicology and Chemistry, 34, 2378–2384. https://doi.org/10.1002/etc.3086.
Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language. Chapman & Hall.
Belanger, S. E., & Carr, G. J. (2019). SSDs revisited: Part II—Practical considerations in the development and use of application factors applied to species sensitivity distributions. Environmental Toxicology and Chemistry, 38, 1526–1541. https://doi.org/10.1002/etc.4444.
Belanger, S. E., Barron, M., Craig, P., Dyer, S., Galay‐Burgos, M., Hamer, M., Marshall, S., Posthuma, L., Raimondo, S., & Whitehouse, P. (2017). Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures. Integrated Environmental Assessment and Management, 13, 664–674. https://doi.org/10.1002/ieam.1841.
Belanger, S. E., Beasley, A., Brill, J. L., Krailler, J., Connors, K. A., Carr, G. J., Embry, M., Barron, M. G., Otter, R., & Kienzler, A. (2021). Comparisons of PNEC derivation logic flows under example regulatory schemes and implications for ecoTTC. Regulatory Toxicology and Pharmacology, 123, Article 104933. https://doi.org/10.1016/j.yrtph.2021.104933.
Belanger, S. E., Brill, J. L., Rawlings, J. M., McDonough, K. M., Zoller, A. C., & Wehmeyer, K. R. (2016). Aquatic toxicity structure–activity relationships for the zwitterionic surfactant alkyl dimethyl amine oxide to several aquatic species and a resulting species sensitivity distribution. Ecotoxicology and Environmental Safety, 134, 95–105. https://doi.org/10.1016/j.ecoenv.2016.08.023.
Belanger, S. E., Brill, J. L., Rawlings, J. M., & Price, B. B. (2016). Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions. Chemosphere, 155, 18–27. https://doi.org/10.1016/j.chemosphere.2016.04.029.
Bruce, R. D., & Versteeg, D. J. (1992). A statistical procedure for modeling continuous toxicity data. Environmental Toxicology and Chemistry, 11, 1485–1494. https://doi.org/10.1002/etc.5620111014.
Carr, G. J., & Belanger, S. E. (2019). SSDs revisited: Part I—A framework for sample size guidance on species sensitivity distribution analysis. Environmental Toxicology and Chemistry, 38, 1514–1525. https://doi.org/10.1002/etc.4445.
Carr, G. J., Bailer, J., Rawlings, J. M., & Belanger, S. E. (2018). On the impact of sample size on median lethal concentration in acute fish toxicity testing: Is n = 7/group enough? Environmental Toxicology and Chemistry, 37, 1565–1578. https://doi.org/10.1002/etc.4098.
Connors, K. A., Brill, J. L., Norberg‐King, T., Barron, M. G., Carr, G., & Belanger, S. E. (2021). Daphnia magna and Ceriodaphnia dubia have similar sensitivity in standard acute and chronic toxicity tests. Environmental Toxicology and Chemistry, 41, 137–147. https://doi.org/10.1002/etc.5249.
Dyer, S. D., Versteeg, D. J., Belanger, S. E., Chaney, J. G., Raimondo, S., & Barron, M. G. (2008). Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria. Environmental Science & Technology, 42, 3076–3083. https://doi.org/10.1021/es702302e.
European Chemicals Agency. (2023). Guidance on information requirements and chemical safety assessment. Chapter R.7b: Endpoint specific guidance (Version 4.0). https://echa.europa.eu/documents/10162/13632/information&#95;requirements&#95;r7b&#95;en.pdf/1a551efc-bd6a-4d1f-b719-16e0d3a01919.
Guo, J., & Iwata, H. (2017). Risk assessment of triclosan in the global environment using a probabilistic approach. Ecotoxicology and Environmental Safety, 143, 111–119. https://doi.org/10.1016/j.ecoenv.2017.05.020.
Kienzler, A., Connors, K. A., Bonnell, M., Barron, M. G., Beasley, A., Inglis, C. G., Norberg‐King, T. J., Martin, T., Sanderson, H., Vallotton, N., Wilson, P., & Embry, M. R. (2019). Mode of action classifications in the EnviroTox Database: Development and implementation of a consensus MOA classification. Environmental Toxicology and Chemistry, 38, 2294–2304. https://doi.org/10.1002/etc.4531.
Klimisch, H.‐J., Andeae, M., & Tillmann, U. (1997). A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regulatory Toxicology and Pharmacology, 25, 1–5. https://doi.org/10.1006/rtph.1996.1076.
Kranzfeder, J. A., Hicks, S. L., & Hurshman, B. A. (1996). Acute toxicity of Iso E‐Super to Scenedesmus subspicatus (IFF Report 96‐220). International Flavors and Fragrances.
Mayo‐Bean, K., Moran‐Bruce, K., Nabholz, J. V., Meylan, W. M., Howard, P. H., & Cassidy, L. (2017). Operation manual for the ecological structure–activity relationship model (ECOSAR) class program. Estimating toxicity of industrial chemicals to aquatic organisms using the ECOSAR (ecological structure activity relationship) class program (Version 2.0). US Environmental Protection Agency.
McDonough, K., Casteel, K., Zoller, A., Wehmeyer, K., Hulzebos, E., Rila, J. P., Salvito, D., & Federle, T. (2017). Probabilistic determination of the ecological risk from OTNE in aquatic and terrestrial compartments based on US‐wide monitoring data. Chemosphere, 167, 255–261. https://doi.org/10.1016/j.chemosphere.2016.10.006.
Moldovan, Z., Chira, R., & Alder, A. C. (2009). Environmental exposure of pharmaceuticals and musk fragrances in the Somes River before and after upgrading the municipal wastewater treatment plant Cluj‐Napoca, Romania. Environmental Science and Pollution Research International, 16(S1), S46–S54. https://doi.org/10.1007/s11356-008-0047-7.
National Academies of Science, Engineering and Medicine. (2022). Review of fate, exposure, and effects of sunscreens in aquatic environments and implications for sunscreen usage and human health. Committee on Environmental Impact of Currently Marketed Sunscreens and Potential Human Impacts of Changes in Sunscreen Usage. https://doi.org/10.17226/26381.
NOTOX. (2001). Zebrafish (Danio rerio), early life stage toxicity test with OTNE‐14C (flow through) (M. Bogers, NOTOX Project 277267).
NOTOX. (2002). Daphnia magna, 21‐day chronic toxicity test with OTNE‐14C (flow through) (M. Bogers, NOTOX Project 277278).
Organisation for Economic Co‐operation and Development. (1992a). Test No. 201: Alga, growth inhibition test, OECD guidelines for the testing of chemicals.
Organisation for Economic Co‐operation and Development. (1992b). Test No. 210: Fish, early‐life stages toxicity test. OECD guidelines for the testing of chemicals.
Organisation for Economic Co‐operation and Development. (1997). Test Guideline No. 202: Daphnia sp., acute immobilization and reproduction test, 1984, extended with recommendations and supplements included with draft updated OECD test guideline 211, 1997. OECD guidelines for the testing of chemicals.
Organisation for Economic Co‐operation and Development. (2001). Test no. 303A: Simulation test—aerobic sewage treatment: 303A: Activated sludge units chemicals. OECD guidelines for the testing of chemicals.
Organisation for Economic Co‐operation and Development. (2004). Test No. 219: Sediment–water chironomid toxicity test using spiked water. OECD guidelines for the testing of chemicals. (2004). Test No. 219: Sediment–water chironomid toxicity test using spiked water. OECD guidelines for the testing of chemicals.
Organisation for Economic Co‐operation and Development. (2006). Test No. 221: Lemna sp. Growth inhibition test. OECD guidelines for the testing.
Organisation for Economic Co‐operation and Development. (2011). Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals.
Organisation for Economic Co‐operation and Development. (2012). Test No. 211: Daphnia magna reproduction test. OECD guidelines for testing of chemcals.
Organisation for Economic Co‐operation and Development. (2013). Test No. 210: Fish early life stage toxicity test. OECD guidelines for the testing of chemicals.
Organisation for Economic Co‐operation and Development. (2019). Guidance document on aquatic toxicity testing of difficult substances and mixtures (Guidance Document No. 23, ENV/JM/MONO[2000]6/REV1). 10.1787/0ed2f88e‐en.
OTNE Consortium. (2020). Request for risk evaluation under the Toxic Substances Control Act; octahydro‐tetramethyl‐naphthalenyl‐ethanone chemical category. https://www.epa.gov/sites/default/files/2020-12/documents/otne&#95;mrre.pdf.
Posthuma, L., Suter, G. W., & Traas. T. P. (2002). Species sensitivity distributions in ecotoxicology (p. 616). Lewis Publishers, CRC Press.
R: A language and environment for statistical computing [Computer software]. (2023). R Foundation for Statistical Computing. https://www.r-project.org/about.html.
Raimondo, S., Lilavois, C. R., & Barron, M. G. (2016). Web‐based interspecies correlation estimation (Web‐ICE) for acute toxicity: User manual (Version 3.3, EPA/600/R‐15/192). US Environmental Protection Agency.
Raimondo, S., Montague, B., & Barron, M. G. (2007). Determinants of variability in acute to chronic toxicity ratios for aquatic invertebrates and fish. Environmental Toxicology and Chemistry, 26, 2019–2023. https://doi.org/10.1897/07-069r.1.
Research Institute for Fragrance Materials. (2020a). OTNE: A 7‐day static renewal toxicity test with duckweed (Lemna gibbaEurofins EAG Agroscience G3). OECD test guideline 221. In J. R. T. Arnie, A. Lockard, J. A. Aufderheide, & L. Zhang (Eds.), (Study No. 558P‐109).
Research Institute for Fragrance Materials. (2020b). A 7‐day static life cycle toxicity test with the cladoceran (Ceriodaphnia dubiaEurofins EAG Agroscience). OECD test guideline 211. In T. Minderhout, L. A. Lockard, S. Z. Schneider, & L. Zhang (Eds.), (Study No 558A‐181).
Research Institute for Fragrance Materials. (2021a). OTNE: A semi‐static life cycle toxicity test with the cladoceran (Daphnia pulexEurofins EAG Agroscience). OECD test guideline 211. In T. Minderhout, L. A. Lockard, L. Zhang, S. Z. Schneider, & K. H. Martin (Eds.), (Study No. 558A‐180).
Research Institute for Fragrance Materials. (2021b). OTNE: A water‐dosed flow through life cycle toxicity test with the freshwater amphipod (Hyalella aztecaEurofins EAG Agroscience). ASTM test guideline 1706‐05 (2010) and US EPA test guideline 600/R‐99/064. In N. Billa, L. McKelvey, S. Z. Schneider, & L. Zhang (Eds.), (Study No. 558A‐184).
Research Institute for Fragrance Materials. (2021c). OTNE: An early life stage toxicity test with the fathead minnow (Pimephales promelasEurofins EAG Agroscience). OECD test guideline 210. In T. Minderhout, L. A. Lockard, L. Zhang, S. Z. Schneider, & K. H. Martin (Eds.), (Study No. 558A‐179).
Research Institute for Fragrance Materials. (2022a). OTNE: A 96‐h toxicity test with the cyanobacteria (Anabaena flos‐aquaeEurofins EAG Agroscience). OECD test guideline 201 and US EPA OCSPP test guideline 850.4550. In J. R. Arnie, R. M. Koogle, L. McKelvey, J. A. Aufderheide, & L. Zhang (Eds.), (Study No. 558P‐111B).
Research Institute for Fragrance Materials. (2022b). OTNE: A 96‐h toxicity test with the freshwater diatom (Navicula pelliculosaEurofins EAG Agroscience). OECD test guideline 201 and US EPA OCSPP test guideline 850.4500. In J. R. Arnie, R. M. Koogle, L. McKelvey, J. A. Aufderheide, & L. Zhang (Eds.), (Study No. 558P‐111B).
Research Institute for Fragrance Materials. (2022c). OTNE: A water‐dosed flow through prolonged toxcicity test with the midge (Chironomus ripariusEurofins EAG Agroscience). OECD test guideline 219. In N. Billa, L. McKelvey, S. Z. Schneider, & L. Zhang (Eds.), (Study No. 558A‐184).
Salvito, D. T., Senna, R. J., & Federle, T. W. (2002). A framework for prioritizing fragrance materials for aquatic risk assessment. Environmental Toxicology and Chemistry, 21, 1301–1308. https://doi.org/10.1002/etc.5620210627.
Simonich, S. L., Federle, T. W., Eckhoff, W. S., Rottiers, A., Webb, S., Sabaliunas, D., & de Wolf, W. (2002). Removal of fragrance materials during U.S. and European wastewater treatment. Environmental Science & Technology, 36, 2839–2847. https://doi.org/10.1021/es025503e.
Solomon, K., Giesy, J., & Jones, P. (2000). Probabilistic risk assessment of agrochemicals in the environment. Crop Protection, 19, 649–655. https://doi.org/10.1016/S0261-2194(00)00086-7.
Stubblefield, W. A., Van Genderen, E., Cardwell, A. S., Heijerick, D. G., Janssen, C. R., & De Schamphelaere, K. A. C. (2020). Acute and chronic toxicity of cobalt to freshwater organisms: Using a species sensitivity distribution approach to establish international water quality standards. Environmental Toxicology and Chemistry, 39, 799–811. https://doi.org/10.1002/etc.4662.
Tanaka, Y., Nakamura, K., & Yokomizo, H. (2018). Relative robustness of NOEC and ECx against large uncertainties in data. PLOS ONE, 13, Article e0206901. https://doi.org/10.1371/journal.pone.0206901.
US Environmental Protection Agency. (2000). Methods for measuring the toxicity and bioaccumulation of sediment‐associated contaminants with freshwater invertebrates (2nd ed., EPA 600/R‐99/064).
US Environmental Protection Agency. (2002). Daphnid, Ceriodaphnia dubia, survival and reproduction test: Chronic toxicity method 1002.0. Short‐term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms (4th ed., EPA‐821‐R‐02‐013).
US Environmental Protection Agency. (2012a). Ecological effects test guidelines: Aquatic plant toxicity test using Lemna spp. (OCSPP No. 850.4400, EPA 712‐C‐008).
Versteeg, D. J., Belanger, S. E., & Carr, G. J. (1999). Understanding single species and model ecosystem sensitivity: A data‐based comparison. Environmental Toxicology and Chemistry, 18, 1329–1346. https://doi.org/10.1002/etc.5620180636.
Versteeg, D. J., Stalmans, M., Dyer, S. D., & Janssen, C. (1997). Ceriodaphnia and Daphnia: A comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere, 34, 869–892. https://doi.org/10.1016/S0045-6535(97)00014-3.
فهرسة مساهمة: Keywords: Aquatic toxicology; Ecotoxicology; Fragrance; Hazard/risk assessment; Species sensitivity distributions
المشرفين على المادة: 0 (Water Pollutants, Chemical)
0 (Naphthalenes)
0 (Perfume)
تواريخ الأحداث: Date Created: 20240425 Date Completed: 20240603 Latest Revision: 20240603
رمز التحديث: 20240603
DOI: 10.1002/etc.5865
PMID: 38661477
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-8618
DOI:10.1002/etc.5865