دورية أكاديمية

Crocin enhances the sensitivity to paclitaxel in human breast cancer cells by reducing BIRC5 expression.

التفاصيل البيبلوغرافية
العنوان: Crocin enhances the sensitivity to paclitaxel in human breast cancer cells by reducing BIRC5 expression.
المؤلفون: Jia Y; Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China., Yang H; Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, China., Yu J; Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China.; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China., Li Z; Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China., Jia G; Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China., Ding B; Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, China.
المصدر: Chemical biology & drug design [Chem Biol Drug Des] 2024 Feb; Vol. 103 (2), pp. e14467.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262549 Publication Model: Print Cited Medium: Internet ISSN: 1747-0285 (Electronic) Linking ISSN: 17470277 NLM ISO Abbreviation: Chem Biol Drug Des Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Wiley-Blackwell, 2006-
مواضيع طبية MeSH: Paclitaxel*/pharmacology , Breast Neoplasms*/drug therapy , Breast Neoplasms*/metabolism , Breast Neoplasms*/pathology , Survivin*/metabolism , Survivin*/genetics , Carotenoids*/pharmacology , Carotenoids*/chemistry , Apoptosis*/drug effects, Humans ; Female ; MCF-7 Cells ; Drug Resistance, Neoplasm/drug effects ; Cell Survival/drug effects ; Antineoplastic Agents, Phytogenic/pharmacology ; Antineoplastic Agents, Phytogenic/chemistry ; Cell Line, Tumor
مستخلص: Paclitaxel (PTX) is one of the first-line chemotherapeutic agents for treating breast cancer. However, PTX resistance remains a major hurdle in breast cancer therapy. Crocin, the main chemical constituent of saffron, shows anti-cancer activity against various types of cancer. However, the effect of crocin on the resistance of PTX in breast cancer is still unknown. CCK-8 and TUNEL assays were employed to detect cell viability and apoptosis, respectively. The targets of crocin were predicted using HERB database and the targets associated with breast cancer were acquired using GEPIA database. The Venn diagram was utilized to identify the common targets between crocin and breast cancer. Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) expression was detected by qRT-PCR and western blot analysis. The correlation between BIRC5 expression and survival was analyzed by Kaplan-Meier plotter and PrognoScan databases. Our data suggested that crocin aggravated PTX-induced decrease of viability and increase of apoptosis in MCF-7 and MCF-7/PTX cells. BIRC5 was identified as the target of crocin against breast cancer. Crocin inhibited BIRC5 expression in MCF-7 and MCF-7/PTX cells. BIRC5 is overexpressed in breast cancer tissues, as well as PTX-sensitive and PTX-resistant breast cancer cells. BIRC5 expression is related to the poor survival of patients with breast cancer. Depletion of BIRC5 strengthened PTX-induced viability reduction and promotion of apoptosis in MCF-7 and MCF-7/PTX cells. Moreover, BIRC5 overexpression reversed the inhibitory effect of crocin on PTX resistance in breast cancer cells. In conclusion, crocin enhanced the sensitivity of PTX in breast cancer cells partially through inhibiting BIRC5 expression.
(© 2024 John Wiley & Sons Ltd.)
References: Ahmed, S., Hasan, M. M., Heydari, M., Rauf, A., Bawazeer, S., Abu‐Izneid, T., Rebezov, M., Shariati, M. A., Daglia, M., & Rengasamy, K. R. (2020). Therapeutic potentials of crocin in medication of neurological disorders. Food and Chemical Toxicology, 145, 111739. https://doi.org/10.1016/j.fct.2020.111739.
Alavizadeh, S. H., & Hosseinzadeh, H. (2014). Bioactivity assessment and toxicity of crocin: A comprehensive review. Food and Chemical Toxicology, 64, 65–80. https://doi.org/10.1016/j.fct.2013.11.016.
Ambrosini, G., Adida, C., & Altieri, D. C. (1997). A novel anti‐apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Medicine, 3(8), 917–921. https://doi.org/10.1038/nm0897‐917.
Arzi, L., Riazi, G., Sadeghizadeh, M., Hoshyar, R., & Jafarzadeh, N. (2018). A comparative study on anti‐invasion, antimigration, and antiadhesion effects of the bioactive carotenoids of saffron on 4T1 breast cancer cells through their effects on Wnt/β‐catenin pathway genes. DNA and Cell Biology, 37(8), 697–707. https://doi.org/10.1089/dna.2018.4248.
Ashrafi, M., Bathaie, S. Z., Abroun, S., & Azizian, M. (2015). Effect of crocin on cell cycle regulators in N‐nitroso‐N‐methylurea‐induced breast cancer in rats. DNA and Cell Biology, 34(11), 684–691. https://doi.org/10.1089/dna.2015.2951.
Aung, H. H., Wang, C. Z., Ni, M., Fishbein, A., Mehendale, S. R., Xie, J. T., Shoyama, C. Y., & Yuan, C. S. (2007). Crocin from Crocus sativus possesses significant anti‐proliferation effects on human colorectal cancer cells. Experimental Oncology, 29(3), 175–180.
Bakshi, H., Sam, S., Rozati, R., Sultan, P., Islam, T., Rathore, B., Lone, Z., Sharma, M., Triphati, J., & Saxena, R. C. (2010). DNA fragmentation and cell cycle arrest: A hallmark of apoptosis induced by crocin from kashmiri saffron in a human pancreatic cancer cell line. Asian Pacific Journal of Cancer Prevention, 11(3), 675–679.
Bakshi, H. A., Hakkim, F. L., & Sam, S. (2016). Molecular mechanism of crocin induced caspase mediated MCF‐7 cell death: In vivo toxicity profiling and ex vivo macrophage activation. Asian Pacific Journal of Cancer Prevention, 17(3), 1499–1506. https://doi.org/10.7314/apjcp.2016.17.3.1499.
Bolhassani, A., Khavari, A., & Bathaie, S. Z. (2014). Saffron and natural carotenoids: Biochemical activities and anti‐tumor effects. Biochimica et Biophysica Acta, 1845(1), 20–30. https://doi.org/10.1016/j.bbcan.2013.11.001.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492.
Calì Cassi, L., Vanni, G., Petrella, G., Orsaria, P., Pistolese, C., Lo Russo, G., Innocenti, M., & Buonomo, O. (2016). Comparative study of oncoplastic versus non‐oncoplastic breast conserving surgery in a group of 211 breast cancer patients. European Review for Medical and Pharmacological Sciences, 20(14), 2950–2954.
Chryssanthi, D. G., Dedes, P. G., Karamanos, N. K., Cordopatis, P., & Lamari, F. N. (2011). Crocetin inhibits invasiveness of MDA‐MB‐231 breast cancer cells via downregulation of matrix metalloproteinases. Planta Medica, 77(2), 146–151. https://doi.org/10.1055/s‐0030‐1250178.
Dai, J. B., Zhu, B., Lin, W. J., Gao, H. Y., Dai, H., Zheng, L., Shi, W. H., & Chen, W. X. (2020). Identification of prognostic significance of BIRC5 in breast cancer using integrative bioinformatics analysis. Bioscience Reports, 40(2), BSR20193678. https://doi.org/10.1042/bsr20193678.
D'Alessandro, A. M., Mancini, A., Lizzi, A. R., De Simone, A., Marroccella, C. E., Gravina, G. L., Tatone, C., & Festuccia, C. (2013). Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutrition and Cancer, 65(6), 930–942. https://doi.org/10.1080/01635581.2013.767368.
DeMichele, A., Yee, D., & Esserman, L. (2017). Mechanisms of resistance to neoadjuvant chemotherapy in breast cancer. The New England Journal of Medicine, 377(23), 2287–2289. https://doi.org/10.1056/NEJMcibr1711545.
Duffy, M. J., O'Donovan, N., Brennan, D. J., Gallagher, W. M., & Ryan, B. M. (2007). Survivin: A promising tumor biomarker. Cancer Letters, 249(1), 49–60. https://doi.org/10.1016/j.canlet.2006.12.020.
Fang, S., Dong, L., Liu, L., Guo, J., Zhao, L., Zhang, J., Bu, D., Liu, X., Huo, P., Cao, W., Dong, Q., Wu, J., Zeng, X., Wu, Y., & Zhao, Y. (2021). HERB: A high‐throughput experiment‐ and reference‐guided database of traditional Chinese medicine. Nucleic Acids Research, 49(D1), D1197–d1206. https://doi.org/10.1093/nar/gkaa1063.
Festuccia, C., Mancini, A., Gravina, G. L., Scarsella, L., Llorens, S., Alonso, G. L., Tatone, C., Di Cesare, E., Jannini, E. A., Lenzi, A., D'Alessandro, A. M., & Carmona, M. (2014). Antitumor effects of saffron‐derived carotenoids in prostate cancer cell models. BioMed Research International, 2014, 135048. https://doi.org/10.1155/2014/135048.
Gyorffy, B., Lánczky, A., & Szállási, Z. (2012). Implementing an online tool for genome‐wide validation of survival‐associated biomarkers in ovarian‐cancer using microarray data from 1287 patients. Endocrine‐Related Cancer, 19(2), 197–208. https://doi.org/10.1530/erc‐11‐0329.
Hashemi, S. A., Bathaie, S. Z., & Mohagheghi, M. A. (2020). Crocetin and crocin decreased cholesterol and triglyceride content of both breast cancer tumors and cell lines. Avicenna Journal of Phytomedicine, 10(4), 384–397.
Hashemzaei, M., Mamoulakis, C., Tsarouhas, K., Georgiadis, G., Lazopoulos, G., Tsatsakis, A., Shojaei Asrami, E., & Rezaee, R. (2020). Crocin: A fighter against inflammation and pain. Food and Chemical Toxicology, 143, 111521. https://doi.org/10.1016/j.fct.2020.111521.
He, D. X., Gu, F., Gao, F., Hao, J. J., Gong, D., Gu, X. T., Mao, A. Q., Jin, J., Fu, L., & Ma, X. (2016). Genome‐wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer. Scientific Reports, 6, 24706. https://doi.org/10.1038/srep24706.
He, S. Y., Qian, Z. Y., Tang, F. T., Wen, N., Xu, G. L., & Sheng, L. (2005). Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sciences, 77(8), 907–921. https://doi.org/10.1016/j.lfs.2005.02.006.
Hire, R. R., Srivastava, S., Davis, M. B., Kumar Konreddy, A., & Panda, D. (2017). Antiproliferative activity of crocin involves targeting of microtubules in breast cancer cells. Scientific Reports, 7, 44984. https://doi.org/10.1038/srep44984.
Hu, Y., Xu, K., & Yagüe, E. (2015). miR‐218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Research and Treatment, 151(2), 269–280. https://doi.org/10.1007/s10549‐015‐3372‐9.
Jiang, Y., de Bruin, A., Caldas, H., Fangusaro, J., Hayes, J., Conway, E. M., Robinson, M. L., & Altura, R. A. (2005). Essential role for survivin in early brain development. The Journal of Neuroscience, 25(30), 6962–6970. https://doi.org/10.1523/jneurosci.1446‐05.2005.
Kawasaki, H., Altieri, D. C., Lu, C. D., Toyoda, M., Tenjo, T., & Tanigawa, N. (1998). Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Research, 58(22), 5071–5074.
Li, X., Huang, T., Jiang, G., Gong, W., Qian, H., & Zou, C. (2013). Synergistic apoptotic effect of crocin and cisplatin on osteosarcoma cells via caspase induced apoptosis. Toxicology Letters, 221(3), 197–204. https://doi.org/10.1016/j.toxlet.2013.06.233.
Lu, P., Lin, H., Gu, Y., Li, L., Guo, H., Wang, F., & Qiu, X. (2015). Antitumor effects of crocin on human breast cancer cells. International Journal of Clinical and Experimental Medicine, 8(11), 20316–20322.
Mahdizadeh, S., Karimi, G., Behravan, J., Arabzadeh, S., Lage, H., & Kalalinia, F. (2016). Crocin suppresses multidrug resistance in MRP overexpressing ovarian cancer cell line. DARU‐Journal of Pharmaceutical Sciences, 24(1), 17. https://doi.org/10.1186/s40199‐016‐0155‐8.
Mizuno, H., Kitada, K., Nakai, K., & Sarai, A. (2009). PrognoScan: A new database for meta‐analysis of the prognostic value of genes. BMC Medical Genomics, 2, 18. https://doi.org/10.1186/1755‐8794‐2‐18.
Mostafavinia, S. E., Khorashadizadeh, M., & Hoshyar, R. (2016). Antiproliferative and proapoptotic effects of crocin combined with hyperthermia on human breast cancer cells. DNA and Cell Biology, 35(7), 340–347. https://doi.org/10.1089/dna.2015.3208.
O'Driscoll, L., & Clynes, M. (2006). Biomarkers and multiple drug resistance in breast cancer. Current Cancer Drug Targets, 6(5), 365–384. https://doi.org/10.2174/156800906777723958.
Perez, E. A. (1998). Paclitaxel in breast cancer. The Oncologist, 3(6), 373–389.
Rezaee, R., Mahmoudi, M., Abnous, K., Zamani Taghizadeh Rabe, S., Tabasi, N., Hashemzaei, M., & Karimi, G. (2013). Cytotoxic effects of crocin on MOLT‐4 human leukemia cells. Journal of Complementary & Integrative Medicine, 10, 105–112. https://doi.org/10.1515/jcim‐2013‐0011.
Samarghandian, S., & Borji, A. (2014). Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Research, 6(2), 99–107. https://doi.org/10.4103/0974‐8490.128963.
Shafei, A., El‐Bakly, W., Sobhy, A., Wagdy, O., Reda, A., Aboelenin, O., Marzouk, A., El Habak, K., Mostafa, R., Ali, M. A., & Ellithy, M. (2017). A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & Pharmacotherapy, 95, 1209–1218. https://doi.org/10.1016/j.biopha.2017.09.059.
Shang, X., Liu, G., Zhang, Y., Tang, P., Zhang, H., Jiang, H., & Yu, Z. (2018). Downregulation of BIRC5 inhibits the migration and invasion of esophageal cancer cells by interacting with the PI3K/Akt signaling pathway. Oncology Letters, 16(3), 3373–3379. https://doi.org/10.3892/ol.2018.8986.
Shariat Razavi, S. M., Mahmoudzadeh Vaziri, R., Karimi, G., Arabzadeh, S., Keyvani, V., Behravan, J., & Kalalinia, F. (2020). Crocin increases gastric cancer cells' sensitivity to doxorubicin. Asian Pacific Journal of Cancer Prevention, 21(7), 1959–1967. https://doi.org/10.31557/apjcp.2020.21.7.1959.
Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 66(1), 7–30. https://doi.org/10.3322/caac.21332.
Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), w98–w102. https://doi.org/10.1093/nar/gkx247.
Vali, F., Changizi, V., & Safa, M. (2015). Synergistic apoptotic effect of crocin and paclitaxel or crocin and radiation on MCF‐7 cells, a type of breast cancer cell line. International Journal of Breast Cancer, 2015, 139349. https://doi.org/10.1155/2015/139349.
Wang, C., Zheng, X., Shen, C., & Shi, Y. (2012). MicroRNA‐203 suppresses cell proliferation and migration by targeting BIRC5 and LASP1 in human triple‐negative breast cancer cells. Journal of Experimental & Clinical Cancer Research, 31(1), 58. https://doi.org/10.1186/1756‐9966‐31‐58.
Wheatley, S. P., & McNeish, I. A. (2005). Survivin: A protein with dual roles in mitosis and apoptosis. International Review of Cytology, 247, 35–88. https://doi.org/10.1016/s0074‐7696(05)47002‐3.
Xu, J. H., Hu, S. L., & Shen, G. D. (2016). Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy. Cancer Cell International, 16, 13. https://doi.org/10.1186/s12935‐016‐0290‐9.
Yamamoto, H., Ngan, C. Y., & Monden, M. (2008). Cancer cells survive with survivin. Cancer Science, 99(9), 1709–1714. https://doi.org/10.1111/j.1349‐7006.2008.00870.x.
Zafari, P., & Rafiei, A. (2019). Survivin a pivotal antiapoptotic protein in rheumatoid arthritis. Journal of Cellular Physiology, 234(12), 21575–21587. https://doi.org/10.1002/jcp.28784.
معلومات مُعتمدة: Funder name: Henan Medical Science and Technology Research PlanFunder No. LHGJ20230966 Funder name: Nanyang Basic and Frontier Research Project Funder No. JCQY002.
فهرسة مساهمة: Keywords: BIRC5; apoptosis; breast cancer; crocin; paclitaxel resistance
المشرفين على المادة: 877GWI46C2 (crocin)
P88XT4IS4D (Paclitaxel)
0 (Survivin)
36-88-4 (Carotenoids)
0 (BIRC5 protein, human)
0 (Antineoplastic Agents, Phytogenic)
تواريخ الأحداث: Date Created: 20240425 Date Completed: 20240425 Latest Revision: 20240425
رمز التحديث: 20240425
DOI: 10.1111/cbdd.14467
PMID: 38661582
قاعدة البيانات: MEDLINE
الوصف
تدمد:1747-0285
DOI:10.1111/cbdd.14467