دورية أكاديمية

Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322.

التفاصيل البيبلوغرافية
العنوان: Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322.
المؤلفون: Lee JH; Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, 07804, Republic of Korea., Oh HM; Institute of Liberal Arts Education, Pukyong National University, Busan, 48547, Republic of Korea. marinebio@pknu.ac.kr.
المصدر: Journal of microbiology (Seoul, Korea) [J Microbiol] 2024 Apr; Vol. 62 (4), pp. 297-314. Date of Electronic Publication: 2024 Apr 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Microbiological Society Of Korea Country of Publication: Korea (South) NLM ID: 9703165 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1976-3794 (Electronic) Linking ISSN: 12258873 NLM ISO Abbreviation: J Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Seoul : Microbiological Society Of Korea
مواضيع طبية MeSH: Transcriptome* , Light* , Rhodopsins, Microbial*/genetics , Rhodopsins, Microbial*/metabolism , Gene Expression Regulation, Bacterial* , Darkness*, Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Gene Expression Profiling
مستخلص: To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
(© 2024. The Author(s), under exclusive licence to Microbiological Society of Korea.)
References: Anashkin, V. A., Bertsova, Y. V., Mamedov, A. M., Mamedov, M. D., Arutyunyan, A. M., Baykov, A. A., & Bogachev, A. V. (2018). Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na + -translocating rhodopsin by a single amino acid substitution. Photosynthesis Research, 136, 161–169. (PMID: 2898372310.1007/s11120-017-0453-0)
Anderson, B. W., Fung, D. K., & Wang, J. D. (2021). Regulatory themes and variations by the stress-signaling nucleotide alarmones (p)ppGpp in bacteria. Annual Review of Genetics, 55, 115–133. (PMID: 3441611810.1146/annurev-genet-021821-025827)
Atamna-Ismaeel, N., Sabehi, G., Sharon, I., Witzel, K. P., Labrenz, M., Jürgens, K., Barkay, T., Stomp, M., Huisman, J., & Béjà, O. (2008). Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. The ISME Journal, 2, 656–662. (PMID: 1836932910.1038/ismej.2008.27)
Atkinson, G. C., Tenson, T., & Hauryliuk, V. (2011). The RelA/SpoT homolog (RSH) superfamily: Distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS ONE, 6, e23479. (PMID: 21858139315348510.1371/journal.pone.0023479)
Béjà, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, S., Gates, C. M., Feldman, R. A., Spudich, J. L., et al. (2000). Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science, 289, 1902–1906. (PMID: 1098806410.1126/science.289.5486.1902)
Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M., & DeLong, E. F. (2001). Proteorhodopsin phototrophy in the ocean. Nature, 411, 786–789. (PMID: 1145905410.1038/35081051)
Büke, F., Grilli, J., Cosentino Lagomarsino, M., Bokinsky, G., & Tans, S. J. (2022). ppGpp is a bacterial cell size regulator. Current Biology, 32, 870–877. (PMID: 3499059810.1016/j.cub.2021.12.033)
Chiang, Y. C., Huang, K. Y., Tong, S., & Xu, H. W. (2016). Stringent response triggered by valine-induced amino acid starvation does not increase antibiotic tolerance in Escherichia coli cultures grown at low cell density. Journal of Experimental Microbiology and Immunology, 20, 35–42.
Chomczynski, P., & Mackey, K. (1995). Substitution of chloroform by bromochloropropane in the single-step method of RNA isolation. Analytical Biochemistry, 225, 163–164. (PMID: 753998210.1006/abio.1995.1126)
Collier, J. (2016). Cell cycle control in Alphaproteobacteria. Current Opinion in Microbiology, 30, 107–113. (PMID: 2687148210.1016/j.mib.2016.01.010)
Connon, S. A., & Giovannoni, S. J. (2002). High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Applied and Environmental Microbiology, 68, 3878–3885. (PMID: 1214748512403310.1128/AEM.68.8.3878-3885.2002)
Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics, 33, 2938–2940. (PMID: 28645171587071210.1093/bioinformatics/btx364)
Dupont, C. L., Rusch, D. B., Yooseph, S., Lombardo, M. J., Alexander Richter, R., Valas, R., Novotny, M., Yee-Greenbaum, J., Selengut, J. D., Haft, D. H., et al. (2012). Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. The ISME Journal, 6, 1186–1199. (PMID: 2217042110.1038/ismej.2011.189)
Edwards, A. W. F. (2007). Picturing the genetic code. Nature Precedings. https://doi.org/10.1038/npre.2007.682.1. (PMID: 10.1038/npre.2007.682.1)
El May, A., Zouaoui, J., Snoussi, S., Ben Mouhoub, R., & Landoulsi, A. (2021). relA and spoT gene expression is modulated in Salmonella grown under static magnetic field. Current Microbiology, 78, 887–893. (PMID: 3351532110.1007/s00284-021-02346-7)
Fang, M., & Bauer, C. E. (2018). Regulation of stringent factor by branched-chain amino acids. Proceedings of the National Academy of Sciences of the United States of America, 115, 6446–6451. (PMID: 29866825601680010.1073/pnas.1803220115)
Fuhrman, J. A., & Hagström, Å. (2008). Bacterial and archaeal community structure and its patterns. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 45–90). Wiley. https://doi.org/10.1002/9780470281840.ch3. (PMID: 10.1002/9780470281840.ch3)
Fuhrman, J. A., Schwalbach, M. S., & Stingl, U. (2008). Proteorhodopsins: An array of physiological roles? Nature Reviews Microbiology, 6, 488–494. (PMID: 1847530610.1038/nrmicro1893)
Giovannoni, S. J., Bibbs, L., Cho, J. C., Stapels, M. D., Desiderio, R., Vergin, K. L., Rappe, M. S., Laney, S., Wilhelm, L. J., Tripp, H. J., et al. (2005). Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature, 438, 82–85. (PMID: 1626755310.1038/nature04032)
Gkekas, S., Singh, R. K., Shkumatov, A. V., Messens, J., Fauvart, M., Verstraeten, N., Michiels, J., & Versées, W. (2017). Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. Journal of Biological Chemistry, 292, 5871–5883. (PMID: 28223358539257910.1074/jbc.M116.761809)
Gómez-Consarnau, L., González, J. M., Coll-Llado, M., Gourdon, P., Pascher, T., Neutze, R., Pedros-Alio, C., & Pinhassi, J. (2007). Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature, 445, 210–213. (PMID: 1721584310.1038/nature05381)
Gómez-Consarnau, L., González, J. M., Riedel, T., Jaenicke, S., Wagner-Döbler, I., Sañudo-Wilhelmy, S. A., & Fuhrman, J. A. (2016). Proteorhodopsin light-enhanced growth linked to vitamin-B 1 acquisition in marine Flavobacteria. The ISME Journal, 10, 1102–1112. (PMID: 2657468710.1038/ismej.2015.196)
Grote, J., Bayindirli, C., Bergauer, K., Carpintero de Moraes, P., Chen, H., D’Ambrosio, L., Edwards, B., Fernández-Gómez, B., Hamisi, M., Logares, R., et al. (2011). Draft genome sequence of strain HIMB100, a cultured representative of the SAR116 clade of marine Alphaproteobacteria. Standards in Genomic Sciences, 5, 269–278. (PMID: 22675578336841310.4056/sigs.1854551)
Ho, Y. S. J., Burden, L. M., & Hurley, J. H. (2000). Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. The EMBO Journal, 19, 5288–5299. (PMID: 1103279631400110.1093/emboj/19.20.5288)
Jang, Y., Oh, H. M., Kang, I., Lee, K., Yang, S. J., & Cho, J. C. (2011). Genome sequence of strain IMCC3088, a proteorhodopsin-containing marine bacterium belonging to the OM60/NOR5 clade. Journal of Bacteriology, 193, 3415–3416. (PMID: 21551310313326910.1128/JB.05111-11)
Johnson, E. T., Baron, D. B., Naranjo, B., Bond, D. R., Schmidt-Dannert, C., & Gralnick, J. A. (2010). Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Applied and Environmental Microbiology, 76, 4123–4129. (PMID: 20453141289746310.1128/AEM.02425-09)
Kalia, D., Merey, G., Nakayama, S., Zheng, Y., Zhou, J., Luo, Y., Guo, M., Roembke, B. T., & Sintim, H. O. (2013). Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chemical Society Reviews, 42, 305–341. (PMID: 2302321010.1039/C2CS35206K)
Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at GenomeNet. Nucleic Acids Research, 30, 42–46. (PMID: 117522499909110.1093/nar/30.1.42)
Kang, I., Kang, D., Oh, H. M., Kim, H., Kim, H. J., Kang, T. W., Kim, S. Y., & Cho, J. C. (2011). Genome sequence of strain IMCC2047, a novel marine member of the Gammaproteobacteria. Journal of Bacteriology, 193, 3688–3689. (PMID: 21602327313333910.1128/JB.05226-11)
Kang, I., Oh, H. M., Kang, D., & Cho, J. C. (2013). Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proceedings of the National Academy of Sciences of the United States of America, 110, 12343–12348. (PMID: 23798439372509210.1073/pnas.1219930110)
Kaplun, A., Chipman, D. M., & Barak, Z. (2002). Isoleucine starvation caused by sulfometuron methyl in Salmonella typhimurium measured by translational frameshifting. Microbiology, 148, 713–717. (PMID: 1188270510.1099/00221287-148-3-713)
Karl, D. M. (2002). Hidden in a sea of microbes. Nature, 415, 590–591. (PMID: 1183292310.1038/415590b)
Kim, J. Y., Jo, B. H., Jo, Y., & Cha, H. J. (2012). Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase. Microbial Cell Factories, 11, 2. (PMID: 22217184331161010.1186/1475-2859-11-2)
Kimura, H., Young, C. R., Martinez, A., & DeLong, E. F. (2011). Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium. The ISME Journal, 5, 1641–1651. (PMID: 21472017317651010.1038/ismej.2011.36)
Landwehr, V., Milanov, M., Angebauer, L., Hong, J., Jüngert, G., Hiersemenzel, A., Siebler, A., Schmit, F., Öztürk, Y., Dannenmaier, S., et al. (2021). The universally conserved ATPase YchF regulates translation of leaderless mRNA in response to stress conditions. Frontiers in Molecular Biosciences, 8, 643696. (PMID: 34026826813813810.3389/fmolb.2021.643696)
Lee, J., Kwon, K. K., Lim, S. I., Song, J., Choi, A. R., Yang, S. H., Jung, K. H., Lee, J. H., Kang, S. G., Oh, H. M., et al. (2019). Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322. Journal of Microbiology, 57, 676–687. (PMID: 3120172410.1007/s12275-019-9001-2)
Lee, S., Kim, M. H., Kang, B. S., Kim, J. S., Kim, G. H., Kim, Y. G., & Kim, K. J. (2008). Crystal structure of Escherichia coli MazG, the regulator of nutritional stress response. Journal of Biological Chemistry, 283, 15232–15240. (PMID: 18353782325888310.1074/jbc.M800479200)
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589–595. (PMID: 20080505282810810.1093/bioinformatics/btp698)
Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E., & DeLong, E. F. (2007). Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proceedings of the National Academy of Sciences of the United States of America, 104, 5590–5595. (PMID: 17372221183849610.1073/pnas.0611470104)
Nyström, T. (2004). Stationary-phase physiology. Annual Review of Microbiology, 58, 161–181. (PMID: 1548793410.1146/annurev.micro.58.030603.123818)
Oh, H. M., Kang, I., Ferriera, S., Giovannoni, S. J., & Cho, J. C. (2010a). Genome sequence of the oligotrophic marine Gammaproteobacterium HTCC2143, isolated from the Oregon coast. Journal of Bacteriology, 192, 4530–4531. (PMID: 20601481293739710.1128/JB.00683-10)
Oh, H. M., Kang, I., Lee, K., Jang, Y., Lim, S. I., & Cho, J. C. (2011). Complete genome sequence of strain IMCC9063, belonging to SAR11 subgroup 3, isolated from the Arctic ocean. Journal of Bacteriology, 193, 3379–3380. (PMID: 21515764313329310.1128/JB.05033-11)
Oh, H. M., Kwon, K. K., Kang, I., Kang, S. G., Lee, J. H., Kim, S. J., & Cho, J. C. (2010b). Complete genome sequence of “Candidatus Puniceispirillum marinum” IMCC1322, a representative of the SAR116 clade in the Alphaproteobacteria. Journal of Bacteriology, 192, 3240–3241. (PMID: 20382761290169610.1128/JB.00347-10)
Petchiappan, A., Naik, S. Y., & Chatterji, D. (2020). Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria. Biophysical Reviews, 12, 719–730. (PMID: 32060735731155610.1007/s12551-020-00636-1)
Qiu, D., Lange, E., Haas, T. M., Prucker, I., Masuda, S., Wang, Y. L., Felix, G., Schaaf, G., & Jessen, H. J. (2023). Bacterial pathogen infection triggers magic spot nucleotide signaling in Arabidopsis thaliana R chloroplasts through specific RelA/SpoT homologues. Journal of the American Chemical Society, 145, 16081–16089. (PMID: 374371951037552810.1021/jacs.3c04445)
Riedel, T., Tomasch, J., Buchholz, I., Jacobs, J., Kollenberg, M., Gerdts, G., Wichels, A., Brinkhoff, T., Cypionka, H., & Wagner-Dobler, I. (2010). Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Applied and Environmental Microbiology, 76, 3187–3197. (PMID: 20305030286914310.1128/AEM.02971-09)
Russell, J. B., & Cook, G. M. (1995). Energetics of bacterial growth: Balance of anabolic and catabolic reactions. Microbiological Reviews, 59, 48–62. (PMID: 770801223935410.1128/mr.59.1.48-62.1995)
Sabehi, G., Béjà, O., Suzuki, M. T., Preston, C. M., & DeLong, E. F. (2004). Different SAR86 subgroups harbour divergent proteorhodopsins. Environmental Microbiology, 6, 903–910. (PMID: 1530591510.1111/j.1462-2920.2004.00676.x)
Sabehi, G., Loy, A., Jung, K. H., Partha, R., Spudich, J. L., Isaacson, T., Hirschberg, J., Wagner, M., & Béjà, O. (2005). New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biology, 3, e273. (PMID: 16008504117582210.1371/journal.pbio.0030273)
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.
Schomburg, D., & Salzmann, M. (1990). 3-Hydroxydecanoyl-[acyl-carrier-protein] dehydratase. In D. Schomburg & M. Salzmann (Eds.), Enzyme handbook 1: Class 4: Lyases (pp. 819–823). Springer.
Schwalbach, M. S., Brown, M., & Fuhrman, J. A. (2005). Impact of light on marine bacterioplankton community structure. Aquatic Microbial Ecology, 39, 235–245. (PMID: 10.3354/ame039235)
Shulse, C. N., & Allen, E. E. (2011). Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages. PLoS ONE, 6, e20146. (PMID: 21629834309827310.1371/journal.pone.0020146)
Sobral, R. G., Ludovice, A. M., de Lencastre, H., & Tomasz, A. (2006). Role of murF in cell wall biosynthesis: Isolation and characterization of a murF conditional mutant of Staphylococcus aureus. Journal of Bacteriology, 188, 2543–2553. (PMID: 16547042142842710.1128/JB.188.7.2543-2553.2006)
Steinchen, W., & Bange, G. (2016). The magic dance of the alarmones (p)ppGpp. Molecular Microbiology, 101, 531–544. (PMID: 2714932510.1111/mmi.13412)
Steinchen, W., Zegarra, V., & Bange, G. (2020). (p)ppGpp: Magic modulators of bacterial physiology and metabolism. Frontiers in Microbiology, 11, 2072. (PMID: 33013756750489410.3389/fmicb.2020.02072)
Steiner, U. K. (2021). Senescence in bacteria and its underlying mechanisms. Frontiers in Cell and Developmental Biology, 9, 668915. (PMID: 34222238824985810.3389/fcell.2021.668915)
Stingl, U., Desiderio, R. A., Cho, J. C., Vergin, K. L., & Giovannoni, S. J. (2007a). The SAR92 clade: An abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Applied and Environmental Microbiology, 73, 2290–2296. (PMID: 17293499185567810.1128/AEM.02559-06)
Stingl, U., Tripp, H. J., & Giovannoni, S. J. (2007b). Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. The ISME Journal, 1, 361–371. (PMID: 1804364710.1038/ismej.2007.49)
Stouthamer, A. H. (1973). A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek, 39, 545–565. (PMID: 414802610.1007/BF02578899)
Taylor, B. L., & Zhulin, I. B. (1999). PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiology and Molecular Biology Reviews, 63, 479–506. (PMID: 103578599897410.1128/MMBR.63.2.479-506.1999)
Walter, J. M., Greenfield, D., Bustamante, C., & Liphardt, J. (2007). Light-powering Escherichia coli with proteorhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 104, 2408–2412. (PMID: 17277079189294810.1073/pnas.0611035104)
Wang, L., Feng, Z., Wang, X., Wang, X., & Zhang, X. (2010). DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26, 136–138. (PMID: 1985510510.1093/bioinformatics/btp612)
Wang, Z., O’Shaughnessy, T. J., Soto, C. M., Rahbar, A. M., Robertson, K. L., Lebedev, N., & Vora, G. J. (2012). Function and regulation of Vibrio campbellii proteorhodopsin: Acquired phototrophy in a classical organoheterotroph. PLoS ONE, 7, e38749. (PMID: 22741028338064210.1371/journal.pone.0038749)
Warwick-Dugdale, J., Buchholz, H. H., Allen, M. J., & Temperton, B. (2019). Host-hijacking and planktonic piracy: How phages command the microbial high seas. Virology Journal, 16, 15. (PMID: 30709355635987010.1186/s12985-019-1120-1)
Xu, C., Weston, B. R., Tyson, J. J., & Cao, Y. (2020). Cell cycle control and environmental response by second messengers in Caulobacter crescentus. BMC Bioinformatics, 21, 408. (PMID: 32998723752617110.1186/s12859-020-03687-z)
Yoshizawa, S., Kawanabe, A., Ito, H., Kandori, H., & Kogure, K. (2012). Diversity and functional analysis of proteorhodopsin in marine Flavobacteria. Environmental Microbiology, 14, 1240–1248. (PMID: 2232955210.1111/j.1462-2920.2012.02702.x)
Zimbro, M. J., Power, D. A., Miller, S. M., Wilson, G. E., & Johnson, J. A. (2018) Difco TM & BBL TM Manual. In Manual of microbiological culture media (pp. 676–677). Becton, Dickinson and Company.
معلومات مُعتمدة: 2018340 Korea Institute of Marine Science and Technology promotion
فهرسة مساهمة: Keywords: Candidatus Puniceispirillum marinum; Exponential phase; Light; Proteorhodopsin; SAR116; Stationary/death phase; Transcriptome
المشرفين على المادة: 0 (Rhodopsins, Microbial)
0 (proteorhodopsin)
0 (Bacterial Proteins)
تواريخ الأحداث: Date Created: 20240425 Date Completed: 20240610 Latest Revision: 20240610
رمز التحديث: 20240610
DOI: 10.1007/s12275-024-00125-0
PMID: 38662311
قاعدة البيانات: MEDLINE
الوصف
تدمد:1976-3794
DOI:10.1007/s12275-024-00125-0