دورية أكاديمية

Development of aptamer surface-enhanced Raman spectroscopy sensor based on Fe 3 O 4 @Pt and Au@Ag nanoparticles for the determination of acetamiprid.

التفاصيل البيبلوغرافية
العنوان: Development of aptamer surface-enhanced Raman spectroscopy sensor based on Fe 3 O 4 @Pt and Au@Ag nanoparticles for the determination of acetamiprid.
المؤلفون: Dong S; College of Plant Protection, Yangzhou University, Yangzhou, 225009, China. dongsa.123@163.com., Zhu Z; College of Plant Protection, Yangzhou University, Yangzhou, 225009, China., Shi Q; College of Plant Protection, Yangzhou University, Yangzhou, 225009, China., He K; College of Plant Protection, Yangzhou University, Yangzhou, 225009, China., Wu J; College of Plant Protection, Yangzhou University, Yangzhou, 225009, China., Feng J; College of Plant Protection, Yangzhou University, Yangzhou, 225009, China. jgfeng@yzu.edu.cn.
المصدر: Mikrochimica acta [Mikrochim Acta] 2024 Apr 29; Vol. 191 (5), pp. 289. Date of Electronic Publication: 2024 Apr 29.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Wien ; New York : Springer-Verlag.
مواضيع طبية MeSH: Neonicotinoids*/analysis , Aptamers, Nucleotide*/chemistry , Gold*/chemistry , Silver*/chemistry , Limit of Detection* , Metal Nanoparticles*/chemistry , Spectrum Analysis, Raman*/methods, Platinum/chemistry ; Insecticides/analysis ; Cucumis sativus/chemistry
مستخلص: As a common chlorinated nicotinic pesticide with high insecticidal activity, acetamiprid has been widely used for pest control. However, the irrational use of acetamiprid will pollute the environment and thus affect human health. Therefore, it is crucial to develop a simple, highly sensitive, and rapid method for acetamiprid residue detection. In this study, the capture probe (Fe 3 O 4 @Pt-Aptamer) was connected with the signal probe (Au@DTNB@Ag CS-cDNA) to form an assembly with multiple SERS-enhanced effects. Combined with magnetic separation technology, a SERS sensor with high sensitivity and stability was constructed to detect acetamiprid residue. Based on the optimal conditions, the SERS intensity measured at 1333 cm -1 is in relation to the concentration of acetamiprid in the range 2.25 × 10 -9 -2.25 × 10 -5  M, and the calculated limit of detection (LOD) was 2.87 × 10 -10  M. There was no cross-reactivity with thiacloprid, clothianidin, nitenpyram, imidacloprid, and chlorpyrifos, indicating that this method has good sensitivity and specificity. Finally, the method was applied to the detection of acetamiprid in cucumber samples, and the average recoveries were 94.19-103.58%, with RSD < 2.32%. The sensor can be used to analyse real samples with fast detection speed, high sensitivity, and high selectivity.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Guo Y, Yang F, Yao Y et al (2021) Novel Au-tetrahedral aptamer nanostructure for the electrochemiluminescence detection of acetamiprid. J Hazard Mater 401:123794. https://doi.org/10.1016/j.jhazmat.2020.123794. (PMID: 10.1016/j.jhazmat.2020.12379433113737)
Wang J, Zhang D, Xu K, Hui N, Wang D (2022) Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites. Microchim Acta 189:395. https://doi.org/10.1007/s00604-022-05490-4. (PMID: 10.1007/s00604-022-05490-4)
Phogat A, Singh J, Kumar V, Malik V (2022) Toxicity of the acetamiprid insecticide for mammals: a review. Environ Chem Lett 20:1453–1478. https://doi.org/10.1007/s10311-021-01353-1. (PMID: 10.1007/s10311-021-01353-1)
Bai F, Bu T, Zhao S et al (2022) Golf-shaped Bi 2 Se 3 microparticles based-immunochromatographic strip for ultrasensitive detection of acetamiprid. J Hazard Mater 433:128810. https://doi.org/10.1016/j.jhazmat.2022.128810. (PMID: 10.1016/j.jhazmat.2022.12881035381511)
Shi X, Sun J, Yao Y et al (2020) Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. Sci Total Environ 705:135905. https://doi.org/10.1016/j.scitotenv.2019.135905. (PMID: 10.1016/j.scitotenv.2019.13590531838423)
Harischandra NR, Pallavi MS, Bheemanna M et al (2021) Simultaneous determination of 79 pesticides in pigeonpea grains using GC-MS/MS and LC-MS/MS. Food Chem 347:128986. https://doi.org/10.1016/j.foodchem.2020.128986. (PMID: 10.1016/j.foodchem.2020.12898633515969)
Janta P, Wongla B, Phayoonhong W et al (2022) Analysis of low-volatility pesticides in cabbage by high temperature comprehensive two-dimensional gas chromatography. Anal Methods 14:3180–3187. https://doi.org/10.1039/d2ay00998f. (PMID: 10.1039/d2ay00998f35929731)
Yıldırım İ, Çiftçi U (2022) Monitoring of pesticide residues in peppers from Çanakkale (Turkey) public market using QuEChERS method and LC-MS/MS and GC-MS/MS detection. Environ Monit Assess 194:570. https://doi.org/10.1007/s10661-022-10253-y. (PMID: 10.1007/s10661-022-10253-y35796789)
Feizy J, Nezhadali A, Es’haghi Z, Beheshti HR (2017) HPLC Determination of hexythiazox in food samples by MISPE extraction. Chromatographia 80:437–446. https://doi.org/10.1007/s10337-017-3251-0. (PMID: 10.1007/s10337-017-3251-0)
Kongmany S, Hoa TT, Hanh LT et al (2016) Semi-preparative HPLC separation followed by HPLC/UV and tandem mass spectrometric analysis of phorbol esters in Jatropha seed. J Chromatogr B Analyt Technol Biomed Life Sci 1038:63–72. https://doi.org/10.1016/j.jchromb.2016.10.016. (PMID: 10.1016/j.jchromb.2016.10.01627794223)
Amero P, Lokesh GLR, Chaudhari RR et al (2021) Conversion of RNA aptamer into modified DNA aptamers provides for prolonged stability and enhanced antitumor activity. J Am Chem Soc 143:7655–7670. https://doi.org/10.1021/jacs.9b10460. (PMID: 10.1021/jacs.9b1046033988982)
Chen Q, Sheng R, Wang P et al (2020) Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. Spectrochim Acta A Mol Biomol Spectrosc 241:118654. https://doi.org/10.1016/j.saa.2020.118654. (PMID: 10.1016/j.saa.2020.11865432659702)
Chen X, Lisi F, Bakthavathsalam P et al (2021) Impact of the coverage of aptamers on a nanoparticle on the binding equilibrium and kinetics between aptamer and protein. ACS Sens 6:538–545. https://doi.org/10.1021/acssensors.0c02212. (PMID: 10.1021/acssensors.0c0221233296177)
Kalita JJ, Sharma P, Bora U (2023) Recent developments in application of nucleic acid aptamer in food safety. Food Control 145:109406. https://doi.org/10.1016/j.foodcont.2022.109406. (PMID: 10.1016/j.foodcont.2022.109406)
Liu R, Zhang F, Sang Y et al (2022) Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci Technol 123:355–375. https://doi.org/10.1016/j.tifs.2022.03.025. (PMID: 10.1016/j.tifs.2022.03.025)
Luo Z, Chen S, Zhou J et al (2022) Application of aptamers in regenerative medicine. Front Bioeng Biotechnol 10:976960. https://doi.org/10.3389/fbioe.2022.976960. (PMID: 10.3389/fbioe.2022.976960361056069465253)
Zhou J, Zhao X, Huang G et al (2021) Molecule-specific terahertz biosensors based on an aptamer hydrogel-functionalized metamaterial for sensitive assays in aqueous environments. ACS Sens 6:1884–1890. https://doi.org/10.1021/acssensors.1c00174. (PMID: 10.1021/acssensors.1c0017433979138)
Bai F, Bu T, Li R et al (2022) Rose petals-like Bi semimetal embedded on the zeolitic imidazolate frameworks based-immunochromatographic strip to sensitively detect acetamiprid. J Hazard Mater 423:127202. https://doi.org/10.1016/j.jhazmat.2021.127202. (PMID: 10.1016/j.jhazmat.2021.12720234536846)
Ge K, Hu Y, Zheng Y, Jiang P, Li G (2021) Aptamer/derivatization-based surface-enhanced Raman scattering membrane assembly for selective analysis of melamine and formaldehyde in migration of melamine kitchenware. Talanta 235:122743. https://doi.org/10.1016/j.talanta.2021.122743. (PMID: 10.1016/j.talanta.2021.12274334517611)
Pal S, Harmsen S, Oseledchyk A, Hsu HT, Kircher MF (2017) MUC1 aptamer targeted SERS nanoprobes. Adv Funct Mater 27:1606632. https://doi.org/10.1002/adfm.201606632. (PMID: 10.1002/adfm.201606632291471085685177)
Shi J, Wen G, Liang A, Jiang Z (2023) A novel bifunctional molecularly imprinted polymer-based SERS/RRS dimode nanosensor for ultratrace acetamiprid. Talanta 260:124640. https://doi.org/10.1016/j.talanta.2023.124640. (PMID: 10.1016/j.talanta.2023.12464037149936)
Fan H, Pan Z-Q, Gu H-Y (2010) The self-assembly, characterization and application of hemoglobin immobilized on Fe 3 O 4 @Pt core-shell nanoparticles. Microchim Acta 168:239–244. https://doi.org/10.1007/s00604-009-0279-3. (PMID: 10.1007/s00604-009-0279-3)
Madrakian T, Asl KD, Ahmadi M, Afkhami A (2016) Fe 3 O 4 @Pt/MWCNT/carbon paste electrode for determination of a doxorubicin anticancer drug in a human urine sample. RSC Adv 6:72803–72809. https://doi.org/10.1039/c6ra13935c. (PMID: 10.1039/c6ra13935c)
Huang R, Liu R (2017) Efficient in situ growth of platinum nanoclusters on the surface of Fe 3 O 4 for the detection of latent fingermarks. J Mater Sci 52:13455–13465. https://doi.org/10.1007/s10853-017-1475-x. (PMID: 10.1007/s10853-017-1475-x)
Song C, Sun Y, Li J et al (2019) Silver-mediated temperature-controlled selective deposition of Pt on hexoctahedral Au nanoparticles and the high performance of Au@AgPt NPs in catalysis and SERS. Nanoscale 11:18881–18893. https://doi.org/10.1039/c9nr04705k. (PMID: 10.1039/c9nr04705k31596295)
Xu H, Shang H, Wang C, Du Y (2020) Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord Chem Rev 418:213374. https://doi.org/10.1016/j.ccr.2020.213374. (PMID: 10.1016/j.ccr.2020.213374)
Liu Y, Zhou J, Gong J et al (2013) The investigation of electrochemical properties for Fe 3 O 4 @Pt nanocomposites and an enhancement sensing for nitrite. Electrochim Acta 111:876–887. https://doi.org/10.1016/j.electacta.2013.08.077. (PMID: 10.1016/j.electacta.2013.08.077)
Sankar SS, Sangeetha K, Karthick K et al (2018) Pt nanoparticle tethered DNA assemblies for enhanced catalysis and SERS applications. New J Chem 42:15784–15792. https://doi.org/10.1039/c8nj03940b. (PMID: 10.1039/c8nj03940b)
Wu Y, He Y, Yang X, Yuan R, Chai Y (2018) A novel recyclable surface-enhanced Raman spectroscopy platform with duplex-specific nuclease signal amplification for ultrasensitive analysis of microRNA 155. Sens Actuators B Chem 275:260–266. https://doi.org/10.1016/j.snb.2018.08.057. (PMID: 10.1016/j.snb.2018.08.057)
Chen R, Sun Y, Huo B et al (2021) Development of Fe 3 O 4 @Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Anal Chim Acta 1180:338888. https://doi.org/10.1016/j.aca.2021.338888. (PMID: 10.1016/j.aca.2021.33888834538331)
Jia X, Wang C, Rong Z et al (2018) Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of Mycoplasma pneumoniae infection. RSC Adv 8:21243–21251. https://doi.org/10.1039/c8ra03323d. (PMID: 10.1039/c8ra03323d355399039080884)
Li S, He D, Li S et al (2022) Magnetic halloysite nanotube-based SERS biosensor enhanced with Au@Ag core-shell nanotags for bisphenol A determination. Biosensors 12:387. https://doi.org/10.3390/bios12060387 . (Basel). (PMID: 10.3390/bios12060387357355359221462)
Liao W, Chen Y, Huang L et al (2021) A capillary-based SERS sensor for ultrasensitive and selective detection of Hg 2+ by amalgamation with Au@4-MBA@Ag core-shell nanoparticles. Microchim Acta 188:354. https://doi.org/10.1007/s00604-021-05016-4. (PMID: 10.1007/s00604-021-05016-4)
Lin S, Hasi W, Lin X et al (2020) Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens 5:1465–1473. https://doi.org/10.1021/acssensors.0c00398. (PMID: 10.1021/acssensors.0c0039832268725)
Zhang J, Wu C, Yuan R, Huang JA, Yang X (2022) Gap controlled self-assembly Au@Ag@Au NPs for SERS assay of thiram. Food Chem 390:133164. https://doi.org/10.1016/j.foodchem.2022.133164. (PMID: 10.1016/j.foodchem.2022.13316435551030)
Song D, Yang R, Fang S et al (2018) SERS based aptasensor for ochratoxin A by combining Fe 3 O 4 @Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Microchim Acta 185:491. https://doi.org/10.1007/s00604-018-3020-2. (PMID: 10.1007/s00604-018-3020-2)
Xu W, Zhao A, Zuo F et al (2020) Au@Ag core-shell nanoparticles for microRNA-21 determination based on duplex-specific nuclease signal amplification and surface-enhanced Raman scattering. Microchim Acta 187:384. https://doi.org/10.1007/s00604-020-04330-7. (PMID: 10.1007/s00604-020-04330-7)
He H, Sun DW, Pu H, Huang L (2020) Bridging Fe 3 O 4 @Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chem 324:126832. https://doi.org/10.1016/j.foodchem.2020.126832. (PMID: 10.1016/j.foodchem.2020.12683232344338)
Zhou Z, Xiao R, Cheng S et al (2021) A universal SERS-label immunoassay for pathogen bacteria detection based on Fe 3 O 4 @Au-aptamer separation and antibody-protein A orientation recognition. Anal Chim Acta 1160:338421. https://doi.org/10.1016/j.aca.2021.338421. (PMID: 10.1016/j.aca.2021.33842133894956)
Zhang W, Shen F, Hong R (2011) Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles. Particuology 9:179–186. https://doi.org/10.1016/j.partic.2010.07.025. (PMID: 10.1016/j.partic.2010.07.025)
Huynh K-H, Pham X-H, Hahm E et al (2020) Facile histamine detection by surface-enhanced Raman scattering using SiO 2 @Au@Ag alloy nanoparticles. Int J Mol Sci 21:4048. https://doi.org/10.3390/ijms21114048. (PMID: 10.3390/ijms21114048325169817311956)
Yuan Y, Bi S, Zhang F et al (2023) Rapid determination of isepamicin by using SERS based on BSA-protected AgNPs modified by α-Fe 2 O 3 . Spectrochim Acta A Mol Biomol Spectrosc 285:121942. https://doi.org/10.1016/j.saa.2022.121942. (PMID: 10.1016/j.saa.2022.12194236209715)
Li X, Li L, Wang Y et al (2023) Ag NPs@PDMS nanoripple array films as SERS substrates for rapid in situ detection of pesticide residues. Spectrochim Acta A Mol Biomol Spectrosc 299:122877. https://doi.org/10.1016/j.saa.2023.122877. (PMID: 10.1016/j.saa.2023.12287737209479)
Ren Y, Fan Z (2023) Synthesis of fluorescent probe based on molecularly imprinted polymers on nitrogen-doped carbon dots for determination of tobramycin in milk. Food Chem 416:135792. https://doi.org/10.1016/j.foodchem.2023.135792. (PMID: 10.1016/j.foodchem.2023.13579236878117)
Hu F, Fu Q, Li Y et al (2024) Zinc-doped carbon quantum dots-based ratiometric fluorescence probe for rapid, specific, and visual determination of tetracycline hydrochloride. Food Chem 431:137097. https://doi.org/10.1016/j.foodchem.2023.137097. (PMID: 10.1016/j.foodchem.2023.13709737572485)
Deng D, Wang Y, Wen S et al (2023) Metal-organic framework composite Mn/Fe-MOF@Pd with peroxidase-like activities for sensitive colorimetric detection of hydroquinone. Anal Chim Acta 1279:341797. https://doi.org/10.1016/j.aca.2023.341797. (PMID: 10.1016/j.aca.2023.34179737827690)
Wang G, Feng N, Zhao S et al (2024) Synthesis and DFT calculation of microbe-supported Pd nanocomposites with oxidase-like activity for sensitive detection of nitrite. Food Chem 434:137422. https://doi.org/10.1016/j.foodchem.2023.137422. (PMID: 10.1016/j.foodchem.2023.13742237703776)
معلومات مُعتمدة: 32202146 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Acetamiprid residues; Aptamers; Fe3O4@Pt; Magnetic separation; Surface-enhanced Raman spectroscopy
المشرفين على المادة: 5HL5N372P0 (acetamiprid)
0 (Neonicotinoids)
0 (Aptamers, Nucleotide)
7440-57-5 (Gold)
3M4G523W1G (Silver)
49DFR088MY (Platinum)
0 (Insecticides)
تواريخ الأحداث: Date Created: 20240429 Date Completed: 20240429 Latest Revision: 20240511
رمز التحديث: 20240511
DOI: 10.1007/s00604-024-06351-y
PMID: 38683210
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-5073
DOI:10.1007/s00604-024-06351-y