دورية أكاديمية

Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function.

التفاصيل البيبلوغرافية
العنوان: Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function.
المؤلفون: Khani S; Institute for Genetics, University of Cologne, Cologne, Germany.; Max Planck Institute for Metabolism Research, Cologne, Germany., Topel H; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.; Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark., Kardinal R; Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany., Tavanez AR; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.; Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark., Josephrajan A; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.; Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark., Larsen BDM; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark., Gaudry MJ; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden., Leyendecker P; Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany., Egedal NM; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.; Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark., Güller AS; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark., Stanic N; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.; Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark., Ruppert PMM; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark., Gaziano I; Max Planck Institute for Metabolism Research, Cologne, Germany., Hansmeier NR; Max Planck Institute for Metabolism Research, Cologne, Germany., Schmidt E; Max Planck Institute for Metabolism Research, Cologne, Germany., Klemm P; Max Planck Institute for Metabolism Research, Cologne, Germany., Vagliano LM; Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany., Stahl R; Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany., Duthie F; Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany., Krause JH; Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany., Bici A; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany., Engelhard CA; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.; Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark., Gohlke S; Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany., Frommolt P; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany., Gnad T; Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany., Rada-Iglesias A; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain., Pradas-Juni M; Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Copenhagen, Denmark., Schulz TJ; Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.; German Center for Diabetes Research (DZD), München-Neuherberg, Germany., Wunderlich FT; Max Planck Institute for Metabolism Research, Cologne, Germany., Pfeifer A; Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany., Bartelt A; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.; Department of Molecular Metabolism and Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA., Jastroch M; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden., Wachten D; Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany. dwachten@uni-bonn.de., Kornfeld JW; Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. janwilhelmkornfeld@bmb.sdu.dk.; Novo Nordisk Foundation Center for Adipocyte Signaling (Adiposign), University of Southern Denmark, Odense, Denmark. janwilhelmkornfeld@bmb.sdu.dk.
المصدر: Nature metabolism [Nat Metab] 2024 Jun; Vol. 6 (6), pp. 1053-1075. Date of Electronic Publication: 2024 Apr 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Nature, [2019]-
مواضيع طبية MeSH: Adenylyl Cyclases*/metabolism , Adenylyl Cyclases*/genetics , Adipose Tissue, Brown*/metabolism , Cold Temperature*, Animals ; Mice ; Male ; Humans ; Thermogenesis/genetics ; Energy Metabolism ; Cyclic AMP/metabolism ; Mice, Knockout
مستخلص: Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Kusminski, C. M., Bickel, P. E. & Scherer, P. E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Discov. 15, 639–660 (2016). (PMID: 2725647610.1038/nrd.2016.75)
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004). (PMID: 1471591710.1152/physrev.00015.2003)
van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009). (PMID: 1935740510.1056/NEJMoa0808718)
Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009). (PMID: 19357406285995110.1056/NEJMoa0810780)
Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009). (PMID: 1935740710.1056/NEJMoa0808949)
Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013). (PMID: 23867622372616410.1172/JCI67803)
Cypess, A. M. et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015). (PMID: 25565203429835110.1016/j.cmet.2014.12.009)
Mueller, E. Browning and graying: novel transcriptional regulators of brown and beige fat tissues and aging. Front. Endocrinol. 7, 19 (2016). (PMID: 10.3389/fendo.2016.00019)
Marti-Solano, M. et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 587, 650–656 (2020). (PMID: 33149304761112710.1038/s41586-020-2888-2)
Ceddia, R. P. & Collins, S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin. Sci. 134, 473–512 (2020). (PMID: 10.1042/CS20190579)
Kajimura, S., Spiegelman, B. M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015). (PMID: 26445512461381210.1016/j.cmet.2015.09.007)
Blondin, D. P. et al. Human brown adipocyte thermogenesis is driven by beta2-AR stimulation. Cell Metab. 32, 287–300 (2020). (PMID: 3275560810.1016/j.cmet.2020.07.005)
Khannpnavar, B., Mehta, V., Qi, C. & Korkhov, V. Structure and function of adenylyl cyclases, key enzymes in cellular signaling. Curr. Opin. Struct. Biol. 63, 34–41 (2020). (PMID: 3233434410.1016/j.sbi.2020.03.003)
Reverte-Salisa, L., Sanyal, A. & Pfeifer, A. Role of cAMP and cGMP signaling in brown fat. Handb. Exp. Pharmacol. 251, 161–182 (2019). (PMID: 2963318010.1007/164_2018_117)
Wu, L., Shen, C., Seed Ahmed, M., Ostenson, C. G. & Gu, H. F. Adenylate cyclase 3: a new target for anti-obesity drug development. Obes. Rev. 17, 907–914 (2016). (PMID: 2725658910.1111/obr.12430)
Stergiakouli, E. et al. Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity 22, 2252–2259 (2014). (PMID: 2504475810.1002/oby.20840)
Saeed, S. et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet. 50, 175–179 (2018). (PMID: 2931163710.1038/s41588-017-0023-6)
Grarup, N. et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 50, 172–174 (2018). (PMID: 29311636582810610.1038/s41588-017-0022-7)
Toumba, M. et al. Molecular modelling of novel ADCY3 variant predicts a molecular target for tackling obesity. Int. J. Mol. Med. 49, 10 (2022). (PMID: 3482137110.3892/ijmm.2021.5065)
Tong, T., Shen, Y., Lee, H. W., Yu, R. & Park, T. Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice. Sci. Rep. 6, 34179 (2016). (PMID: 27678003503976810.1038/srep34179)
Wang, Z. et al. Adult type 3 adenylyl cyclase-deficient mice are obese. PLoS ONE 4, e6979 (2009). (PMID: 19750222273577510.1371/journal.pone.0006979)
Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000). (PMID: 1105543210.1016/S0896-6273(00)00060-X)
Pitman, J. L. et al. A gain-of-function mutation in adenylate cyclase 3 protects mice from diet-induced obesity. PLoS ONE 9, e110226 (2014). (PMID: 25329148419962910.1371/journal.pone.0110226)
Chen, X. et al. Ablation of type III adenylyl cyclase in mice causes reduced neuronal activity, altered sleep pattern, and depression-like phenotypes. Biol. Psychiatry 80, 836–848 (2016). (PMID: 2686844410.1016/j.biopsych.2015.12.012)
Chao, Y. et al. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci. 11, 66 (2021). (PMID: 33795017801786010.1186/s13578-021-00581-w)
Lin, J. C., Lu, Y. H., Liu, Y. R. & Lin, Y. J. RBM4a-regulated splicing cascade modulates the differentiation and metabolic activities of brown adipocytes. Sci. Rep. 6, 20665 (2016). (PMID: 26857472474662510.1038/srep20665)
Vernia, S. et al. An alternative splicing program promotes adipose tissue thermogenesis. eLife 5, e17672 (2016). (PMID: 27635635502647210.7554/eLife.17672)
Engelhard, C. A., Khani, S., Derdak, S., Bilban, M. & Kornfeld, J. W. Nanopore sequencing unveils the complexity of the cold-activated murine brown adipose tissue transcriptome. iScience 26, 107190 (2023). (PMID: 375647001041051510.1016/j.isci.2023.107190)
Ruas, J. L. et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151, 1319–1331 (2012). (PMID: 23217713352061510.1016/j.cell.2012.10.050)
Jannig, P. R., Dumesic, P. A., Spiegelman, B. M. & Ruas, J. L. SnapShot: regulation and biology of PGC-1α. Cell 185, 1444 (2022). (PMID: 3542750010.1016/j.cell.2022.03.027)
Li, Y. et al. Comparative transcriptome profiling of cold exposure and beta3-AR agonist CL316,243-induced browning of white fat. Front. Physiol. 12, 667698 (2021). (PMID: 34017267812958610.3389/fphys.2021.667698)
Omori, K. & Kotera, J. Overview of PDEs and their regulation. Circ. Res. 100, 309–327 (2007). (PMID: 1730797010.1161/01.RES.0000256354.95791.f1)
Granneman, J. G. Expression of adenylyl cyclase subtypes in brown adipose tissue: neural regulation of type III. Endocrinology 136, 2007–2012 (1995). (PMID: 772064810.1210/endo.136.5.7720648)
Son, Y. et al. REEP6 knockout leads to defective beta-adrenergic signaling in adipocytes and promotes obesity-related metabolic dysfunction. Metabolism 130, 155159 (2022). (PMID: 3515073110.1016/j.metabol.2022.155159)
Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020). (PMID: 3311630510.1038/s41586-020-2856-x)
Perdikari, A. et al. BATLAS: deconvoluting brown adipose tissue. Cell Rep. 25, 784–797 (2018). (PMID: 3033265610.1016/j.celrep.2018.09.044)
Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011). (PMID: 21356515306335810.1016/j.cmet.2011.02.005)
Hamann, A., Flier, J. S. & Lowell, B. B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 137, 21–29 (1996). (PMID: 853661410.1210/endo.137.1.8536614)
Li, F. et al. Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat. Nat. Commun. 12, 6838 (2021). (PMID: 34824202861714010.1038/s41467-021-27141-7)
Schmidt, E. et al. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat. Commun. 9, 3622 (2018). (PMID: 30190464612709710.1038/s41467-018-05933-8)
Oliverio, M. et al. Dicer1-miR-328-Bace1 signalling controls brown adipose tissue differentiation and function. Nat. Cell Biol. 18, 328–336 (2016). (PMID: 2690075210.1038/ncb3316)
Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009). (PMID: 1918777610.1016/j.cmet.2008.12.014)
Cao, W. et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24, 3057–3067 (2004). (PMID: 1502409237112210.1128/MCB.24.7.3057-3067.2004)
Lindquist, J. M. & Rehnmark, S. Ambient temperature regulation of apoptosis in brown adipose tissue. Erk1/2 promotes norepinephrine-dependent cell survival. J. Biol. Chem. 273, 30147–30156 (1998). (PMID: 980477010.1074/jbc.273.46.30147)
Hattori, K. et al. beta-adrenergic receptor signaling evokes the PKA-ASK axis in mature brown adipocytes. PLoS ONE 15, e0232645 (2020). (PMID: 33108364759102910.1371/journal.pone.0232645)
Ji, H. et al. CDK7 mediates the beta-adrenergic signaling in thermogenic brown and white adipose tissues. iScience 23, 101163 (2020). (PMID: 32464595725663110.1016/j.isci.2020.101163)
Roh, H. C. et al. Warming induces significant reprogramming of beige, but not brown, adipocyte cellular identity. Cell Metab. 27, 1121–1137 (2018). (PMID: 29657031593213710.1016/j.cmet.2018.03.005)
Pan, D. et al. Jmjd3-mediated H3K27me3 dynamics orchestrate brown fat development and regulate white fat plasticity. Dev. Cell 35, 568–583 (2015). (PMID: 26625958467947810.1016/j.devcel.2015.11.002)
Brunmeir, R. et al. Comparative transcriptomic and epigenomic analyses reveal new regulators of murine brown adipogenesis. PLoS Genet. 12, e1006474 (2016). (PMID: 27923061514006310.1371/journal.pgen.1006474)
Engelhard, C. A. et al. Comprehensive transcriptional profiling and mouse phenotyping reveals dispensable role for adipose tissue selective long noncoding RNA Gm15551. Noncoding RNA 8, 32 (2022). (PMID: 356453399149892)
Darcy, J. & Tseng, Y. H. ComBATing aging-does increased brown adipose tissue activity confer longevity? Geroscience 41, 285–296 (2019). (PMID: 31230192670250410.1007/s11357-019-00076-0)
Crossthwaite, A. J., Ciruela, A., Rayner, T. F. & Cooper, D. M. A direct interaction between the N terminus of adenylyl cyclase AC8 and the catalytic subunit of protein phosphatase 2A. Mol. Pharmacol. 69, 608–617 (2006). (PMID: 1625807310.1124/mol.105.018275)
Ding, Q., Gros, R., Chorazyczewski, J., Ferguson, S. S. & Feldman, R. D. Isoform-specific regulation of adenylyl cyclase function by disruption of membrane trafficking. Mol. Pharmacol. 67, 564–571 (2005). (PMID: 1554724610.1124/mol.104.006817)
Freeze, H. H. & Kranz, C. Endoglycosidase and glycoamidase release of N-linked glycans. Curr. Protoc. Immunol. 8, 8.15.1–8.15.26 (2010).
Lang, T. Imaging SNAREs at work in ‘unroofed’ cells–approaches that may be of general interest for functional studies on membrane proteins. Biochem. Soc. Trans. 31, 861–864 (2003). (PMID: 1288732210.1042/bst0310861)
Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005). (PMID: 1605408510.1016/j.cmet.2005.05.004)
Huang, P. I. et al. PGC-1α mediates differentiation of mesenchymal stem cells to brown adipose cells. J. Atheroscler. Thromb. 18, 966–980 (2011). (PMID: 2181782310.5551/jat.7401)
Liu, Z. et al. N-terminal truncated peroxisome proliferatoractivated receptor gamma coactivator 1 alpha alleviates phenylephrineinduced mitochondrial dysfunction and decreases lipid droplet accumulation in neonatal rat cardiomyocytes. Mol. Med. Rep. 18, 2142–2152 (2018). (PMID: 299011506072228)
Zhang, J. W., Klemm, D. J., Vinson, C. & Lane, M. D. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. J. Biol. Chem. 279, 4471–4478 (2004). (PMID: 1459310210.1074/jbc.M311327200)
Zhang, Y. et al. Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1α. J. Biol. Chem. 284, 32813–32826 (2009). (PMID: 19773550278169810.1074/jbc.M109.037556)
Kim, J. et al. NT-PGC-1α deficiency attenuates high-fat diet-induced obesity by modulating food intake, fecal fat excretion and intestinal fat absorption. Sci. Rep. 11, 1323 (2021). (PMID: 33446719780934110.1038/s41598-020-79823-9)
Martinez-Redondo, V., Pettersson, A. T. & Ruas, J. L. The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58, 1969–1977 (2015). (PMID: 2610921410.1007/s00125-015-3671-z)
Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006). (PMID: 16511594138611110.1172/JCI27794)
Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M. & Shanahan, C. M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 114, 590–600 (2018). (PMID: 29514202585263310.1093/cvr/cvy010)
Clement, N., Glorian, M., Raymondjean, M., Andreani, M. & Limon, I. PGE2 amplifies the effects of IL-1beta on vascular smooth muscle cell de-differentiation: a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8. J. Cell. Physiol. 208, 495–505 (2006). (PMID: 1674192410.1002/jcp.20673)
Keuylian, Z. et al. The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation. J. Biol. Chem. 287, 24978–24989 (2012). (PMID: 22613711340817610.1074/jbc.M111.292516)
Hewer, R. C., Sala-Newby, G. B., Wu, Y. J., Newby, A. C. & Bond, M. PKA and Epac synergistically inhibit smooth muscle cell proliferation. J. Mol. Cell. Cardiol. 50, 87–98 (2011). (PMID: 20971121309361610.1016/j.yjmcc.2010.10.010)
McKean, J. S. et al. The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP. Cardiovasc. Res. 107, 546–555 (2015). (PMID: 26092100454014310.1093/cvr/cvv176)
Vallin, B. et al. Novel short isoforms of adenylyl cyclase as negative regulators of cAMP production. Biochim. Biophys. Acta Mol. Cell. Res. 1865, 1326–1340 (2018). (PMID: 2994019710.1016/j.bbamcr.2018.06.012)
Hu, B., Nakata, H., Gu, C., De Beer, T. & Cooper, D. M. A critical interplay between Ca 2+ inhibition and activation by Mg 2+ of AC5 revealed by mutants and chimeric constructs. J. Biol. Chem. 277, 33139–33147 (2002). (PMID: 1206557510.1074/jbc.M112373200)
Montminy, M. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66, 807–822 (1997). (PMID: 924292510.1146/annurev.biochem.66.1.807)
Li, Y. et al. Clenbuterol upregulates histone demethylase JHDM2a via the beta2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Cell. Signal. 24, 2297–2306 (2012). (PMID: 2282050510.1016/j.cellsig.2012.07.010)
Muglia, L. M. et al. The 5′-flanking region of the mouse adenylyl cyclase type VIII gene imparts tissue-specific expression in transgenic mice. J. Neurosci. 19, 2051–2058 (1999). (PMID: 10066258678254010.1523/JNEUROSCI.19-06-02051.1999)
Chao, J. R. et al. Characterization of the mouse adenylyl cyclase type VIII gene promoter: regulation by cAMP and CREB. Eur. J. Neurosci. 16, 1284–1294 (2002). (PMID: 1240598910.1046/j.1460-9568.2002.02186.x)
Chinsomboon, J. et al. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc. Natl Acad. Sci. USA 106, 21401–21406 (2009). (PMID: 19966219279549210.1073/pnas.0909131106)
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013). (PMID: 23287718379541110.1126/science.1231143)
Zhang, M. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc. Natl Acad. Sci USA 111, 5383–5392 (2014). (PMID: 10.1073/pnas.1419553111)
Stutz, A., Horvath, G. L., Monks, B. G. & Latz, E. ASC speck formation as a readout for inflammasome activation. Methods Mol. Biol. 1040, 91–101 (2013). (PMID: 2385259910.1007/978-1-62703-523-1_8)
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017). (PMID: 28263959560014810.1038/nmeth.4197)
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015). (PMID: 2692522710.12688/f1000research.7563.1)
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). (PMID: 1991030810.1093/bioinformatics/btp616)
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). (PMID: 22455463333937910.1089/omi.2011.0118)
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). (PMID: 29750242613799610.1093/bioinformatics/bty191)
Hahne, F. & Ivanek, R. Visualizing genomic data using Gviz and Bioconductor. Methods Mol. Biol. 1418, 335–351 (2016). (PMID: 2700802210.1007/978-1-4939-3578-9_16)
Sieckmann, K. et al. AdipoQ-a simple, open-source software to quantify adipocyte morphology and function in tissues and in vitro. Mol. Biol. Cell 33, br22 (2022). (PMID: 35947507963530610.1091/mbc.E21-11-0592)
Pichlo, M. et al. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. J. Cell Biol. 206, 541–557 (2014).
Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans Cell Metab. 17, 798–805 (2013).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021). (PMID: 33885785826515710.1093/nar/gkab301)
Meredith, R. W. et al. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011). (PMID: 2194086110.1126/science.1211028)
Perelman, P. et al. A molecular phylogeny of living primates. PLoS Genet. 7, e1001342 (2011). (PMID: 21436896306006510.1371/journal.pgen.1001342)
Swanson, M. T., Oliveros, C. H. & Esselstyn, J. A. A phylogenomic rodent tree reveals the repeated evolution of masseter architectures. Proc. Biol. Sci. 286, 20190672 (2019). (PMID: 310643076532498)
Pradas-Juni, M. et al. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nat. Commun. 11, 644 (2020). (PMID: 32005828699470210.1038/s41467-020-14323-y)
Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020). (PMID: 32188845708080710.1038/s41467-020-15171-6)
معلومات مُعتمدة: 675014 EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)); PROTEOFIT EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)); 33444 Novo Nordisk Fonden (Novo Nordisk Foundation); 28416 Novo Nordisk Fonden (Novo Nordisk Foundation); A/12/97620 Deutscher Akademischer Austauschdienst (German Academic Exchange Service); TRR333/1 (450149205) Deutsche Forschungsgemeinschaft (German Research Foundation); SFB 1454 (432325352) Deutsche Forschungsgemeinschaft (German Research Foundation); TRR83 Deutsche Forschungsgemeinschaft (German Research Foundation); SPP1926 Deutsche Forschungsgemeinschaft (German Research Foundation); SPP1726 Deutsche Forschungsgemeinschaft (German Research Foundation); FOR2743 Deutsche Forschungsgemeinschaft (German Research Foundation); SFB1123-B10 Deutsche Forschungsgemeinschaft (German Research Foundation); 676-2021 European Molecular Biology Organization (EMBO)
المشرفين على المادة: EC 4.6.1.1 (Adenylyl Cyclases)
EC 4.6.1.1 (adenylate cyclase 3)
E0399OZS9N (Cyclic AMP)
تواريخ الأحداث: Date Created: 20240429 Date Completed: 20240625 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1038/s42255-024-01033-8
PMID: 38684889
قاعدة البيانات: MEDLINE
الوصف
تدمد:2522-5812
DOI:10.1038/s42255-024-01033-8