دورية أكاديمية

Design, synthesis, and biological evaluation of dinaciclib and CAN508 hybrids as CDK inhibitors.

التفاصيل البيبلوغرافية
العنوان: Design, synthesis, and biological evaluation of dinaciclib and CAN508 hybrids as CDK inhibitors.
المؤلفون: Odeh DM; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt., Allam HA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt., Baselious F; Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany., Mahmoud WR; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt., Odeh MM; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan., Ibrahim HS; Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt., Abdel-Aziz HA; Department of Applied Organic Chemistry, National Research Center, Cairo, Dokki, Egypt., Mohammed ER; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
المصدر: Drug development research [Drug Dev Res] 2024 May; Vol. 85 (3), pp. e22193.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8204468 Publication Model: Print Cited Medium: Internet ISSN: 1098-2299 (Electronic) Linking ISSN: 02724391 NLM ISO Abbreviation: Drug Dev Res Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Wiley-Liss
Original Publication: New York : Alan R. Liss, c1981-
مواضيع طبية MeSH: Pyridinium Compounds*/pharmacology , Pyridinium Compounds*/chemistry , Indolizines*/pharmacology , Indolizines*/chemistry , Bridged Bicyclo Compounds, Heterocyclic*/pharmacology , Bridged Bicyclo Compounds, Heterocyclic*/chemistry , Drug Design* , Cyclic N-Oxides*/pharmacology , Cyclic N-Oxides*/chemistry , Protein Kinase Inhibitors*/pharmacology , Protein Kinase Inhibitors*/chemical synthesis , Protein Kinase Inhibitors*/chemistry , Molecular Docking Simulation* , Antineoplastic Agents*/pharmacology , Antineoplastic Agents*/chemical synthesis , Antineoplastic Agents*/chemistry, Humans ; Cell Line, Tumor ; Cyclin-Dependent Kinases/antagonists & inhibitors ; Structure-Activity Relationship ; Pyrimidines/pharmacology ; Pyrimidines/chemistry ; Drug Screening Assays, Antitumor ; Cyclin-Dependent Kinase 5/antagonists & inhibitors ; Cyclin-Dependent Kinase 5/metabolism ; Cyclin-Dependent Kinase 9/antagonists & inhibitors ; Cyclin-Dependent Kinase 9/metabolism
مستخلص: The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 μM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC 50  = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC 50  = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.
(© 2024 Wiley Periodicals LLC.)
References: Abdelhamid, A. O., & Al‐Atoom, A. A. (2006). Reactions with hydrazonoyl halides 45: Synthesis of some new triazolino[4,3‐a]pyrimidines, pyrazolo[3,4‐d]pyridazines, isoxazolo[3,4‐d] pyridazines, and thieno[2,3‐b]pyridines. Synthetic Communications, 36(1), 97–110.
Ahmed, O. M., Mohamed, M. A., Ahmed, R. R., & Ahmed, S. A. (2009). Synthesis and anti‐tumor activities of some new pyridines and pyrazolo[1,5‐a]pyrimidines. European Journal of Medicinal Chemistry, 44(9), 3519–3523.
Al‐Warhi, T., Abo‐Ashour, M. F., Almahli, H., Alotaibi, O. J., Al‐Sanea, M. M., Al‐Ansary, G. H., Ahmed, H. Y., Elaasser, M. M., Eldehna, W. M., & Abdel‐Aziz, H. A. (2020). Novel [(N‐alkyl‐3‐indolylmethylene)hydrazono]oxindoles arrest cell cycle and induce cell apoptosis by inhibiting CDK2 and Bcl‐2: Synthesis, biological evaluation and in silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1300–1309.
Amer, A. M., El‐Bermaui, M. A., Ahmed, A. F. S., Soliman, S. M., Amer, A. M., El‐Bermaui, M. A., Ahmed, A. F. S., & Soliman, S. M. (1999). On the chemistry of cinnoline I. Synthesis and reactions of (4‐amino‐cinnolin‐3‐yl)‐p‐tolylmethanones. Monatshefte für Chemie/Chemical Monthly, 130, 1409–1418.
Arias‐Gómez, A., Godoy, A., & Portilla, J. (2021). Functional pyrazolo[1,5‐a]pyrimidines: Current approaches in synthetic transformations and uses as an antitumor scaffold. Molecules, 26(9), 2708.
Asghar, U., Witkiewicz, A. K., Turner, N. C., & Knudsen, E. S. (2015). The history and future of targeting cyclin‐dependent kinases in cancer therapy. Nature Reviews Drug Discovery, 14, 130–146.
Attia, M. H., Elrazaz, E. Z., El‐Emam, S. Z., Taher, A. T., Abdel‐Aziz, H. A., & Abouzid, K. A. M. (2020). Synthesis and in‐vitro anti‐proliferative evaluation of some pyrazolo[1,5‐a]pyrimidines as novel larotrectinib analogs. Bioorganic Chemistry, 94, 103458.
Barghash, R. F., Eldehna, W. M., Kovalová, M., Vojáčková, V., Kryštof, V., & Abdel‐Aziz, H. A. (2022). One‐pot three‐component synthesis of novel pyrazolo[3,4‐b]pyridines as potent antileukemic agents. European Journal of Medicinal Chemistry, 227, 113952.
Baumli, S., Hole, A. J., Noble, M. E. M., & Endicott, J. A. (2012). The CDK9 c‐helix exhibits conformational plasticity that may explain the selectivity of CAN508. ACS Chemical Biology, 7(5), 811–816.
Borowczak, J., Szczerbowski, K., Ahmadi, N., & Szylberg, Ł. (2022). CDK9 inhibitors in multiple myeloma: A review of progress and perspectives. Medical Oncology, 39(4), 39.
Boyd, M. R., & Paull, K. D. (1995). Some practical considerations and applications of The National Cancer Institute in vitro anticancer drug discovery screen. Drug Development Research, 34, 91–109.
Cicenas, J., Kalyan, K., Sorokinas, A., Stankunas, E., Levy, J., Meskinyte, I., Stankevicius, V., Kaupinis, A., & Valius, M. (2015). Roscovitine in cancer and other diseases. Annals of Translational Medicine, 3(10), 135.
Dou, G., Xu, P., Li, Q., Xi, Y., Huang, Z., & Shi, D. (2013). Clean and efficient synthesis of isoxazole derivatives in aqueous media. Molecules, 18, 13645–13653.
Edmondson, J. M., Armstrong, L. S., & Martinez, A. O. (1988). A rapid and simple MTT‐based spectrophotometric assay for determining drug sensitivity in monolayer cultures. Journal of Tissue Culture Methods, 11, 15–17.
Eldehna, W. M., El Hassab, M. A., Abo‐Ashour, M. F., Al‐Warhi, T., Elaasser, M. M., Safwat, N. A., Suliman, H., Ahmed, M. F., Al‐Rashood, S. T., Abdel‐Aziz, H. A., & El‐Haggar, R. (2021). Development of isatin‐thiazolo[3,2‐a]benzimidazole hybrids as novel CDK2 inhibitors with potent in vitro apoptotic anti‐proliferative activity: Synthesis, biological and molecular dynamics investigations. Bioorganic Chemistry, 110, 104748.
Eldehna, W. M., Maklad, R. M., Almahli, H., Al‐Warhi, T., Elkaeed, E. B., Abourehab, M. A. S., Abdel‐Aziz, H. A., & El Kerdawy, A. M. (2022). Identification of 3‐(piperazinylmethyl)benzofuran derivatives as novel type II CDK2 inhibitors: Design, synthesis, biological evaluation, and in silico insights. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1227–1240.
Elfahham, H. A., Elgemeie, G.‐E. H., Ibraheim, Y. R., & Elnagdi, M. H. (1988). Studies on 3,5‐Diaminopyrazoles: New routes for the synthesis of new pyrazoloazines and pyrazoloazoles. Liebigs Annalen der Chemie, 1988, 819–822.
Figel, S., & Fenstermaker, R. A. (2018). Cell‐cycle regulation. Handbook of brain tumor chemotherapy, molecular therapeutics, and immunotherapy (p. 257). Elsevier.
Gupton, J. T., Telang, N., Banner, E. J., Kluball, E. J., Hall, K. E., Finzel, K. L., Jia, X., Bates, S. R., Welden, R. S., Giglio, B. C., Eaton, J. E., Barelli, P. J., Firich, L. T., Stafford, J. A., Coppock, M. B., Worrall, E. F., Kanters, R. P. F., Keertikar, K., & Osterman, R. (2010). The application of (Z)‐3‐aryl‐3‐haloenoic acids to the synthesis of (Z)‐5‐benzylidene‐4‐arylpyrrol‐2(5H)‐ones. Tetrahedron, 66, 9113–9122.
El Hage, K., Piquemal, J. P., Oumata, N., Meijer, L., Galons, H., & Gresh, N. (2017). A simple isomerization of the purine scaffold of a kinase inhibitor, roscovitine, affords a four‐ to seven‐fold enhancement of its affinity for four CDKs. could this be traced back to conjugation‐induced stiffenings/loosenings of rotational barriers? ACS Omega, 2(7), 3467–3474.
Halawa, A. H., Eskandrani, A. A., Elgammal, W. E., Hassan, S. M., Hassan, A. H., Ebrahim, H. Y., Mehany, A. B. M., El‐Agrody, A. M., & Okasha, R. M. (2019). Rational design and synthesis of diverse pyrimidine molecules bearing sulfonamide moiety as novel ERK inhibitors. International Journal of Molecular Sciences, 20(22), 5592.
Hassan, A. S., Mady, M. F., Awad, H. M., & Hafez, T. S. (2017). Synthesis and antitumor activity of some new pyrazolo[1,5‐a]pyrimidines. Chinese Chemical Letters, 28(2), 388–393.
Heathcote, D. A., Patel, H., Kroll, S. H. B., Hazel, P., Periyasamy, M., Alikian, M., Kanneganti, S. K., Jogalekar, A. S., Scheiper, B., Barbazanges, M., Blum, A., Brackow, J., Siwicka, A., Pace, R. D. M., Fuchter, M. J., Snyder, J. P., Liotta, D. C., Freemont, P. S., Aboagye, E. O., … Ali, S. (2010). A novel pyrazolo[1,5‐a]pyrimidine is a potent inhibitor of cyclin‐dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. Journal of Medicinal Chemistry, 53(24), 8508–8522.
Jing, L., Tang, Y., & Xiao, Z. (2018). Discovery of novel CDK inhibitors via scaffold hopping from CAN508. Bioorganic & Medicinal Chemistry Letters, 28(8), 1386–1391.
Jorda, R., Navrátilová, J., Hušková, Z., Schütznerová, E., Cankař, P., Strnad, M., & Kryštof, V. (2014). Arylazopyrazole AAP1742 inhibits CDKs and induces apoptosis in multiple myeloma cells via Mcl‐1 downregulation. Chemical Biology & Drug Design, 84(4), 402–408.
Kaliszczak, M., Patel, H., Kroll, S. H. B., Carroll, L., Smith, G., Delaney, S., Heathcote, D. A., Bondke, A., Fuchter, M. J., Coombes, R. C., Barrett, A. G. M., Ali, S., & Aboagye, E. O. (2013). Development of a cyclin‐dependent kinase inhibitor devoid of ABC transporter‐dependent drug resistance. British Journal of Cancer, 109(9), 2356–2367.
Kantevari, S., Chary, M. V., & Vuppalapati, S. V. N. (2007). A highly efficient regioselective one‐pot synthesis of 2,3,6‐trisubstituted pyridines and 2,7,7‐trisubstituted tetrahydroquinolin‐5‐ones using K5CoW12O40.3H2O as a heterogeneous recyclable catalyst. Tetrahedron, 63, 13024–13031.
Kasiotis, K. M., Tzanetou, E. N., & Haroutounian, S. A. (2014). Pyrazoles as potential anti‐angiogenesis agents: a contemporary overview. Frontiers in Chemistry, 2, 78.
Kryštof, V., Cankař, P., Fryšová, I., Slouka, J., Kontopidis, G., Džubák, P., Hajdúch, M., Srovnal, J., de Azevedo, W. F., Orság, M., Paprskářová, M., Rolčík, J., Látr, A., Fischer, P. M., & Strnad, M. (2006). 4‐Arylazo‐3,5‐diamino‐1H‐pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. Journal of Medicinal Chemistry, 49(22), 6500–6509.
Lin, S. F., Lin, J. D., Hsueh, C., Chou, T. C., & Wong, R. J. (2017). A cyclin‐dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. PLoS One, 12(2), e0172315.
Mohammed, E. R., & Elmasry, G. F. (2022). Development of newly synthesised quinazolinone‐based CDK2 inhibitors with potent efficacy against melanoma. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 686–700.
Mohammed, E. Z., Mahmoud, W. R., George, R. F., Hassan, G. S., Omar, F. A., & Georgey, H. H. (2021). Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole‐based derivatives as potential inhibitors of cyclin dependent kinases (CDKs). Bioorganic Chemistry, 116, 105347.
Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro‐Wolff, A., Gray‐Goodrich, M., Campbell, H., Mayo, J., & Boyd, M. (1991). Feasibility of a high‐flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. JNCI Journal of the National Cancer Institute, 83, 757–766.
Muhammad, S., Javed, M. N., Ali, F. I., Bari, A., & Hashmi, I. A. (2020). Supramolecular polymeric aggregation behavior and its impact on catalytic properties of imidazolium based hydrophilic ionic liquids. Journal of Molecular Liquids, 300, 112372.
Nekardová, M., Vymětalová, L., Khirsariya, P., Kováčová, S., Hylsová, M., Jorda, R., Kryštof, V., Fanfrlík, J., Hobza, P., & Paruch, K. (2017). Structural basis of the interaction of cyclin‐dependent kinase 2 with roscovitine and its analogues having bioisosteric central heterocycles. Chemphyschem, 18(7), 785–795.
Orellana, E. A., & Kasinski, A. L. (2016). Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio‐Protocol, 6(21):e1984.
Parry, D., Guzi, T., Shanahan, F., Davis, N., Prabhavalkar, D., Wiswell, D., Seghezzi, W., Paruch, K., Dwyer, M. P., Doll, R., Nomeir, A., Windsor, W., Fischmann, T., Wang, Y., Oft, M., Chen, T., Kirschmeier, P., & Lees, E. M. (2010). Dinaciclib (SCH 727965), a novel and potent cyclin‐dependent kinase inhibitor. Molecular Cancer Therapeutics, 9(8), 2344–2353.
Paruch, K., Dwyer, M. P., Alvarez, C., Brown, C., Chan, T. Y., Doll, R. J., Keertikar, K., Knutson, C., McKittrick, B., Rivera, J., Rossman, R., Tucker, G., Fischmann, T., Hruza, A., Madison, V., Nomeir, A. A., Wang, Y., Kirschmeier, P., Lees, E., … Guzi, T. J. (2010). Discovery of dinaciclib (SCH 727965): A potent and selective inhibitor of cyclin‐dependent kinases. ACS Medicinal Chemistry Letters, 1(5), 204–208.
Paruch, K., Dwyer, M. P., Alvarez, C., Brown, C., Chan, T. Y., Doll, R. J., Keertikar, K., Knutson, C., McKittrick, B., Rivera, J., Rossman, R., Tucker, G., Fischmann, T. O., Hruza, A., Madison, V., Nomeir, A. A., Wang, Y., Lees, E., Parry, D., … Guzi, T. J. (2007). Pyrazolo[1,5‐a]pyrimidines as orally available inhibitors of cyclin‐dependent kinase 2. Bioorganic & Medicinal Chemistry Letters, 17(22), 6220–6223.
Rosa, F. A., Machado, P., Bonacorso, H. G., Zanatta, N., & Martins, M. A. P. (2008). Reaction of β‐dimethylaminovinyl ketones with hydroxylamine: a simple and useful method for synthesis of 3‐ and 5‐substituted isoxazoles. Journal of Heterocyclic Chemistry, 45(3), 879–885.
Said, M. A., Eldehna, W. M., Nocentini, A., Fahim, S. H., Bonardi, A., Elgazar, A. A., Kryštof, V., Soliman, D. H., Abdel‐Aziz, H. A., Gratteri, P., Abou‐Seri, S. M., & Supuran, C. T. (2020). Sulfonamide‐based ring‐fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. European Journal of Medicinal Chemistry, 189, 112019.
Saqub, H., Proetsch‐Gugerbauer, H., Bezrookove, V., Nosrati, M., Vaquero, E. M., de Semir, D., Ice, R. J., McAllister, S., Soroceanu, L., Kashani‐Sabet, M., Osorio, R., & Dar, A. A. (2020). Dinaciclib, a cyclin‐dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Scientific Reports, 10(1), 18489.
Taher, A., Lumbiny, B. J., & Lee, I.‐M. (2020). A facile microwave‐assisted knoevenagel condensation of various aldehydes and ketones using amine‐functionalized metal organic frameworks. Inorganic Chemistry Communications, 119, 108092.
Zhang, J., Gan, Y., Li, H., Yin, J., He, X., Lin, L., Xu, S., Fang, Z., Kim, B., Gao, L., Ding, L., Zhang, E., Ma, X., Li, J., Li, L., Xu, Y., Horne, D., Xu, R., Yu, H., … Huang, W. (2022). Inhibition of the CDK2 and cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nature Communications, 13(1), 2835.
فهرسة مساهمة: Keywords: CAN508; CDK inhibitors; dinaciclib; pyrazolo[1,5‐a]pyrimidines
المشرفين على المادة: 4V8ECV0NBQ (dinaciclib)
0 (Pyridinium Compounds)
0 (Indolizines)
0 (Bridged Bicyclo Compounds, Heterocyclic)
0 (Cyclic N-Oxides)
0 (Protein Kinase Inhibitors)
0 (Antineoplastic Agents)
EC 2.7.11.22 (Cyclin-Dependent Kinases)
0 (Pyrimidines)
EC 2.7.11.1 (Cyclin-Dependent Kinase 5)
EC 2.7.11.22 (Cyclin-Dependent Kinase 9)
تواريخ الأحداث: Date Created: 20240430 Date Completed: 20240430 Latest Revision: 20240501
رمز التحديث: 20240502
DOI: 10.1002/ddr.22193
PMID: 38685605
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-2299
DOI:10.1002/ddr.22193