دورية أكاديمية

Using leaf economic spectrum and photosynthetic acclimation to evaluate the potential performance of wintersweet under future climate conditions.

التفاصيل البيبلوغرافية
العنوان: Using leaf economic spectrum and photosynthetic acclimation to evaluate the potential performance of wintersweet under future climate conditions.
المؤلفون: Wang L; Department of Landscape Architecture, Jiyang College, Zhejiang A&F University, Zhejiang, China.; Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada., Dang QL; Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.
المصدر: Physiologia plantarum [Physiol Plant] 2024 May-Jun; Vol. 176 (3), pp. e14318.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Scandinavian Society For Plant Physiology Country of Publication: Denmark NLM ID: 1256322 Publication Model: Print Cited Medium: Internet ISSN: 1399-3054 (Electronic) Linking ISSN: 00319317 NLM ISO Abbreviation: Physiol Plant Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Scandinavian Society For Plant Physiology
Original Publication: Lund, Sweden [etc.]
مواضيع طبية MeSH: Photosynthesis*/physiology , Plant Leaves*/physiology , Acclimatization*/physiology , Climate Change* , Carbon Dioxide*/metabolism , Nitrogen*/metabolism, Ecosystem ; Climate
مستخلص: The function of landscape plants on the ecosystem can alleviate environmental issues of urbanization and global change. Global changes due to elevated CO 2 affect plant growth and survival, but there is a lack of quantitative methods to evaluate the adaptability of landscape plants to future climate conditions. Leaf traits characterized by leaf economic spectrum (LES) are the universal currency for predicting the impact on plant ecosystem functions. Elevated CO 2 usually leads to photosynthetic acclimation (PC), characterised by decreased photosynthetic capacity. Here, we proposed a theoretical and practical framework for the use of LES and PC to project the potential performance of landscape plants under future climatic conditions through principal component analysis, structural equation modelling, photosynthetic restriction analysis and nitrogen allocation analysis. We used wintersweet (an important landscaping species) to test the feasibility of this framework under elevated CO 2 and different nitrogen (N) supplies. We found that elevated CO 2 decreased the specific leaf area but increased leaf N concentration. The results suggest wintersweet may be characterized by an LES with high leaf construction costs, low photosynthetic return, and robust stress resistance. Elevated CO 2 reduced photosynthetic capacity and stomatal conductance but increased photosynthetic rate and leaf area. These positive physio-ecological traits, e.g., larger leaf area (canopy), higher water use efficiency and stress resistance, may lead to improved performance of wintersweet under the predicted future climatic conditions. The results suggest planting more wintersweet in urban landscaping may be an effective adaptive strategy to climate change.
(© 2024 Scandinavian Plant Physiology Society.)
References: Ainsworth, E.A., Long, S.P., 2021. 30 years of free‐air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global change biology 27, 27–49.
Alizadeh, B., Hitchmough, J.D., 2020. How will climate change affect future urban naturalistic herbaceous planting? The role of plant origin and fitness. Urban Forestry & Urban Greening 54, 126786.
Anirban, B., 2019. Finding the fragrance genes of wintersweet. Physiologia plantarum 166, 475–477.
Bae, J., Ryu, Y., 2015. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landscape and Urban Planning 136, 57–67.
Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis Jr, A.R., Long, S.P., 2001. Improved temperature response functions for models of Rubisco‐limited photosynthesis. Plant, cell & environment 24, 253–259.
Bowen, J.L., Kearns, P.J., Byrnes, J.E.K., Wigginton, S., Allen, W.J., Greenwood, M., Tran, K., Yu, J., Cronin, J.T., Meyerson, L.A., 2017. Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nature communications 8, 433.
Cui, E., Weng, E., Yan, E., Xia, J., 2020. Robust leaf trait relationships across species under global environmental changes. Nature communications 11, 2999.
Dervishi, V., Fleckenstein, C., Rahman, M.A., Pauleit, S., Ludwig, F., Pretzsch, H., Rötzer, T., 2023. Trees in planters – Growth, structure and ecosystem services of Platanus x hispanica and Tilia cordata and their reaction to soil drought. Urban Forestry & Urban Greening 86, 128024.
Dowtin, A.L., Cregg, B.C., Nowak, D.J., Levia, D.F., 2023. Towards optimized runoff reduction by urban tree cover: A review of key physical tree traits, site conditions, and management strategies. Landscape and Urban Planning 239, 104849.
Dujardin, S., Stas, M., van Eupen, C., Aerts, R., Hendrickx, M., Delcloo, A.W., Duchêne, F., Hamdi, R., Nawrot, T.S., an van Nieuwenhuyse, Aerts, J.‐M., van Orshoven, J., Somers, B., Linard, C., Dendoncker, N., 2022. Mapping abundance distributions of allergenic tree species in urbanized landscapes: A nation‐wide study for Belgium using forest inventory and citizen science data. Landscape and Urban Planning 218, 104286.
Duursma, R.A., 2015. Plantecophys‐‐An R Package for Analysing and Modelling Leaf Gas Exchange Data. PloS one 10, e0143346.
Elferjani, R., Benomar, L., Momayyezi, M., Tognetti, R., Niinemets, Ü., Soolanayakanahally, R.Y., Théroux‐Rancourt, G., Tosens, T., Ripullone, F., Bilodeau‐Gauthier, S., Lamhamedi, M.S., Calfapietra, C., Lamara, M., 2021. A meta‐analysis of mesophyll conductance to CO2 in relation to major abiotic stresses in poplar species. Journal of experimental botany 72, 4384–4400.
Esperon‐Rodriguez, M., Quintans, D., Rymer, P.D., 2023. Urban tree inventories as a tool to assess tree growth and failure: The case for Australian cities. Landscape and Urban Planning 233, 104705.
Falster, D.S., Duursma, R.A., FitzJohn, R.G., 2018. How functional traits influence plant growth and shade tolerance across the life cycle. Proceedings of the National Academy of Sciences of the United States of America 115, E6789‐E6798.
Farquhar, J.A., Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90.
Firn, J., McGree, J.M., Harvey, E., Flores‐Moreno, H., Schütz, M., Buckley, Y.M., Borer, E.T., Seabloom, E.W., La Pierre, K.J., MacDougall, A.M., Prober, S.M., Stevens, C.J., Sullivan, L.L., Porter, E., Ladouceur, E., Allen, C., Moromizato, K.H., Morgan, J.W., Harpole, W.S., Hautier, Y., Eisenhauer, N., Wright, J.P., Adler, P.B., Arnillas, C.A., Bakker, J.D., Biederman, L., Broadbent, A.A.D., Brown, C.S., Bugalho, M.N., Caldeira, M.C., Cleland, E.E., Ebeling, A., Fay, P.A., Hagenah, N., Kleinhesselink, A.R., Mitchell, R., Moore, J.L., Nogueira, C., Peri, P.L., Roscher, C., Smith, M.D., Wragg, P.D., Risch, A.C., 2019. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature ecology & evolution 3, 400–406.
Gratani, L., Varone, L., 2007a. Plant crown traits and carbon sequestration capability by Platanus hybrida Brot. in Rome. Landscape and Urban Planning 81, 282–286.
Gratani, L., Varone, L., 2007b. Plant crown traits and carbon sequestration capability by Platanus hybrida Brot. in Rome. Landscape and Urban Planning 81, 282–286.
IPCC, 2022. Climate Change 2022 ‐ Mitigation of Climate Change ‐ Full Report. Cambridge University Press.
Killi, D., Bussotti, F., Gottardini, E., Pollastrini, M., Mori, J., Tani, C., Papini, A., Ferrini, F., Fini, A., 2018. Photosynthetic and morphological responses of oak species to temperature and [CO2] increased to levels predicted for 2050. Urban Forestry & Urban Greening 31, 26–37.
Kim, J., Lee, D.K., Kim, H.G., 2020. Suitable trees for urban landscapes in the Republic of Korea under climate change. Landscape and Urban Planning 204, 103937.
Kimm, H., Ryu, Y., 2015. Seasonal variations in photosynthetic parameters and leaf area index in an urban park. Urban Forestry & Urban Greening 14, 1059–1067.
Knauer, J., Zaehle, S., Kauwe, M.G. de, Bahar, N.H.A., Evans, J.R., Medlyn, B.E., Reichstein, M., Werner, C., 2019. Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Global change biology 25, 1820–1838.
Krämer, K., Kepp, G., Brock, J., Stutz, S., Heyer, A.G., 2022. Acclimation to elevated CO2 affects the C/N balance by reducing de novo N‐assimilation. Physiologia plantarum 174, e13615.
Lefcheck, J.S., 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7, 573–579.
Liu, H., Ye, Q., Simpson, K.J., Cui, E., Xia, J., 2022. Can evolutionary history predict plant plastic responses to climate change? The New phytologist 235, 1260–1271.
Liu, J., Slik, F., 2022. Are street trees friendly to biodiversity? Landscape and Urban Planning 218, 104304.
Lo Piccolo, E., Lauria, G., Pellegrini, E., Cotrozzi, L., Guidi, L., Skoet, M., Vernieri, P., Remorini, D., Massai, R., Landi, M., 2023. Testing the suitability for coastal green areas of three ornamental shrub species through physiological responses to the saline nebulization. Urban Forestry & Urban Greening 84, 127920.
Lu, Z., Ren, T., Li, J., Hu, W., Zhang, J., Yan, J., Li, X., Cong, R., Guo, S., Lu, J., 2020. Nutrition‐mediated cell and tissue‐level anatomy triggers the covariation of leaf photosynthesis and leaf mass per area. Journal of experimental botany 71, 6524–6537.
Maenpuen, P., Katabuchi, M., Onoda, Y., Zhou, C., Zhang, J.‐L., Chen, Y.‐J., 2022. Sources and consequences of mismatch between leaf disc and whole‐leaf leaf mass per area (LMA). American journal of botany 109, 1242–1250.
Midolo, G., Frenne, P. de, Hölzel, N., Wellstein, C., 2019. Global patterns of intraspecific leaf trait responses to elevation. Global change biology 25, 2485–2498.
Nitschke, C.R., Nichols, S., Allen, K., Dobbs, C., Livesley, S.J., Baker, P.J., Lynch, Y., 2017. The influence of climate and drought on urban tree growth in southeast Australia and the implications for future growth under climate change. Landscape and Urban Planning 167, 275–287.
Nyelele, C., Kroll, C.N., 2021. A multi‐objective decision support framework to prioritize tree planting locations in urban areas. Landscape and Urban Planning 214, 104172.
Onoda, Y., Wright, I.J., Evans, J.R., Hikosaka, K., Kitajima, K., Niinemets, Ü., Poorter, H., Tosens, T., Westoby, M., 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum. The New phytologist 214, 1447–1463.
Ordóñez Barona, C., Wolf, K., Kowalski, J.M., Kendal, D., Byrne, J.A., Conway, T.M., 2022. Diversity in public perceptions of urban forests and urban trees: A critical review. Landscape and Urban Planning 226, 104466.
Pao, Y.‐C., Chen, T.‐W., Moualeu‐Ngangue, D.P., Stützel, H., 2019. Environmental triggers for photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning in the canopy. Journal of experimental botany 70, 2419–2434.
Sakoda, K., Yamori, W., Groszmann, M., Evans, J.R., 2021. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant physiology 185, 146–160.
Shang, J., Tian, J., Cheng, H., Yan, Q., Li, L., Jamal, A., Xu, Z., Xiang, L., Saski, C.A., Jin, S., Zhao, K., Liu, X., Chen, L., 2020. The chromosome‐level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome biology 21, 200.
Shen, Z., Li, W., Li, Y., Liu, M., Cao, H., Provart, N., Ding, X., Sun, M., Tang, Z., Yue, C., Cao, Y., Yuan, D., Zhang, L., 2021. The red flower wintersweet genome provides insights into the evolution of magnoliids and the molecular mechanism for tepal color development. The Plant journal: for cell and molecular biology 108, 1662–1678.
Silva‐Pérez, V., Faveri, J. de, Molero, G., Deery, D.M., Condon, A.G., Reynolds, M.P., Evans, J.R., Furbank, R.T., 2020. Genetic variation for photosynthetic capacity and efficiency in spring wheat. Journal of experimental botany 71, 2299–2311.
Simon, H., Lindén, J., Hoffmann, D., Braun, P., Bruse, M., Esper, J., 2018. Modeling transpiration and leaf temperature of urban trees – A case study evaluating the microclimate model ENVI‐met against measurement data. Landscape and Urban Planning 174, 33–40.
Smith, N.G., Keenan, T.F., 2020. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least‐cost optimality theory. Global change biology 26, 5202–5216.
Song, X., Wu, Q., 2022. Study on smellscape perception and landscape application of fragrant plants. Urban Forestry & Urban Greening 67, 127429.
Sousa‐Silva, R., Duflos, M., Ordóñez Barona, C., Paquette, A., 2023. Keys to better planning and integrating urban tree planting initiatives. Landscape and Urban Planning 231, 104649.
Stas, M., Aerts, R., Hendrickx, M., Dendoncker, N., Dujardin, S., Linard, C., Nawrot, T., an van Nieuwenhuyse, Aerts, J.‐M., van Orshoven, J., Somers, B., 2020. An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban‐rural landscape. Landscape and Urban Planning 198, 103770.
Tang, L., Li, D., Ma, Y., Wang, J., Tian, Y., 2023. The association of residential greenness, genetic susceptibility and telomere length: A cross‐sectional study. Landscape and Urban Planning 239, 104864.
Tcherkez, G., Ben Mariem, S., Larraya, L., García‐Mina, J.M., Zamarreño, A.M., Paradela, A., Cui, J., Badeck, F.‐W., Meza, D., Rizza, F., Bunce, J., Han, X., Tausz‐Posch, S., Cattivelli, L., Fangmeier, A., Aranjuelo, I., 2020. Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. Journal of experimental botany 71, 5990–6003.
Tian, J.‐P., Ma, Z.‐Y., Zhao, K.‐G., Zhang, J., Xiang, L., Chen, L.‐Q., 2019a. Transcriptomic and proteomic approaches to explore the differences in monoterpene and benzenoid biosynthesis between scented and unscented genotypes of wintersweet. Physiologia plantarum 166, 478–493.
Tian, J.‐P., Ma, Z.‐Y., Zhao, K.‐G., Zhang, J., Xiang, L., Chen, L.‐Q., 2019b. Transcriptomic and proteomic approaches to explore the differences in monoterpene and benzenoid biosynthesis between scented and unscented genotypes of wintersweet. Physiologia plantarum 166, 478–493.
Trouwborst, G., Hogewoning, S.W., Harbinson, J., van Ieperen, W., 2011. Photosynthetic acclimation in relation to nitrogen allocation in cucumber leaves in response to changes in irradiance. Physiologia plantarum 142, 157–169.
Velasco, E., Roth, M., Norford, L., Molina, L.T., 2016. Does urban vegetation enhance carbon sequestration? Landscape and Urban Planning 148, 99–107.
Walker, B.J., Skabelund, D.C., Busch, F.A., Ort, D.R., 2016. An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope‐intercept regression. Plant, cell & environment 39, 1198–1203.
Wang, L., Dang, Q.‐L., 2022. Growth and photosynthetic traits differ between shoots originated from axillary buds or from adventitious buds in Populus balsamifera L. cuttings. Physiologia plantarum 174, e13599.
Wang, L., Zheng, J., Wang, G., Dang, Q.‐L., 2022. Increased leaf area compensated photosynthetic downregulation in response to elevated CO 2 and warming in white birch. Can. J. For. Res. 52, 1176–1185.
Wang, L., Zheng, J., Wang, G., Dang, Q.‐L., 2023. Combined effects of elevated CO2 and warmer temperature on limitations to photosynthesis and carbon sequestration in yellow birch. Tree physiology 43, 379–389.
Wang, Y., Chang, Q., Li, X., 2021. Promoting sustainable carbon sequestration of plants in urban greenspace by planting design: A case study in parks of Beijing. Urban Forestry & Urban Greening 64, 127291.
Wellburn, A., 1994. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of plant physiology 144, 307–313.
Xiong, D., Flexas, J., 2018. Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade‐offs. Journal of experimental botany 69, 5599–5609.
Yang, Y., Wang, H., Harrison, S.P., Prentice, I.C., Wright, I.J., Peng, C., Lin, G., 2019. Quantifying leaf‐trait covariation and its controls across climates and biomes. The New phytologist 221, 155–168.
معلومات مُعتمدة: DDG-2020-00008 Natural Sciences and Engineering Research Council of Canada; RC2023B06 Zhejiang A and F University
المشرفين على المادة: 142M471B3J (Carbon Dioxide)
N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20240430 Date Completed: 20240430 Latest Revision: 20240430
رمز التحديث: 20240501
DOI: 10.1111/ppl.14318
PMID: 38686542
قاعدة البيانات: MEDLINE
الوصف
تدمد:1399-3054
DOI:10.1111/ppl.14318