دورية أكاديمية

Revisiting Textbook Azide-Clock Reactions: A "Propeller-Crawling" Mechanism Explains Differences in Rates.

التفاصيل البيبلوغرافية
العنوان: Revisiting Textbook Azide-Clock Reactions: A "Propeller-Crawling" Mechanism Explains Differences in Rates.
المؤلفون: Bogetti AT; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States., Zwier MC; Department of Chemistry, Drake University, Des Moines, Iowa 50311, United States., Chong LT; Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
المصدر: Journal of the American Chemical Society [J Am Chem Soc] 2024 May 08; Vol. 146 (18), pp. 12828-12835. Date of Electronic Publication: 2024 Apr 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 7503056 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1520-5126 (Electronic) Linking ISSN: 00027863 NLM ISO Abbreviation: J Am Chem Soc Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Washington, DC : American Chemical Society
Original Publication: Easton, Pa. [etc.]
مستخلص: An ongoing challenge to chemists is the analysis of pathways and kinetics for chemical reactions in solution, including transient structures between the reactants and products that are difficult to resolve using laboratory experiments. Here, we enabled direct molecular dynamics simulations of a textbook series of chemical reactions on the hundreds of ns to μs time scale using the weighted ensemble (WE) path sampling strategy with hybrid quantum mechanical/molecular mechanical (QM/MM) models. We focused on azide-clock reactions involving addition of an azide anion to each of three long-lived trityl cations in an acetonitrile-water solvent mixture. Results reveal a two-step mechanism: (1) diffusional collision of reactants to form an ion-pair intermediate; (2) "activation" or rearrangement of the intermediate to the product. Our simulations yield not only reaction rates that are within error of experiment but also rates for individual steps, indicating the activation step as rate-limiting for all three cations. Further, the trend in reaction rates is due to dynamical effects, i.e., differing extents of the azide anion "crawling" along the cation's phenyl-ring "propellers" during the activation step. Our study demonstrates the power of analyzing pathways and kinetics to gain insights on reaction mechanisms, underscoring the value of including WE and other related path sampling strategies in the modern toolbox for chemists.
References: J Comput Chem. 2004 Jul 15;25(9):1157-74. (PMID: 15116359)
J Am Chem Soc. 2021 Jan 27;143(3):1577-1589. (PMID: 33439656)
J Chem Theory Comput. 2019 Jun 11;15(6):3499-3509. (PMID: 31002504)
J Am Chem Soc. 2019 Mar 6;141(9):4108-4118. (PMID: 30761897)
J Am Chem Soc. 2005 Oct 12;127(40):13822-31. (PMID: 16201803)
J Phys Chem Lett. 2016 Sep 1;7(17):3440-5. (PMID: 27532687)
Proc Natl Acad Sci U S A. 2018 May 15;115(20):E4569-E4576. (PMID: 29712836)
Protein Sci. 2023 Oct;32(10):e4770. (PMID: 37632831)
J Am Chem Soc. 2016 Nov 23;138(46):15167-15176. (PMID: 27794598)
J Comput Chem. 2007 Sep;28(12):2020-6. (PMID: 17450554)
J Chem Phys. 2020 Jun 14;152(22):224108. (PMID: 32534543)
Annu Rev Biophys. 2017 May 22;46:43-57. (PMID: 28301772)
Annu Rev Phys Chem. 2005;56:57-89. (PMID: 15796696)
J Phys Chem B. 2007 May 24;111(20):5708-18. (PMID: 17474768)
Living J Comput Mol Sci. 2023;5(1):. (PMID: 37200895)
Nat Chem. 2014 Dec;6(12):1044-8. (PMID: 25411881)
J Chem Phys. 2010 Jul 7;133(1):014110. (PMID: 20614962)
J Comput Chem. 2009 Oct;30(13):2157-64. (PMID: 19229944)
Biochemistry. 2013 Apr 23;52(16):2708-28. (PMID: 23557014)
J Am Chem Soc. 2010 Dec 1;132(47):16790-5. (PMID: 21062058)
J Phys Chem Lett. 2023 May 18;14(19):4583-4590. (PMID: 37163748)
Nat Methods. 2018 May;15(5):351-354. (PMID: 29578535)
J Chem Theory Comput. 2022 Feb 8;18(2):638-649. (PMID: 35043623)
Curr Opin Struct Biol. 2017 Apr;43:88-94. (PMID: 27984811)
J Chem Theory Comput. 2009 Jul 14;5(7):1749-60. (PMID: 26610000)
Biophys J. 2021 Jan 5;120(1):158-167. (PMID: 33221248)
J Am Chem Soc. 2019 Apr 24;141(16):6519-6526. (PMID: 30892023)
Chem Sci. 2018 Dec 27;10(8):2360-2372. (PMID: 30881664)
J Am Chem Soc. 2021 Jan 20;143(2):1088-1097. (PMID: 33400509)
J Chem Inf Model. 2023 Dec 25;63(24):7610-7616. (PMID: 38048485)
Biophys J. 1996 Jan;70(1):97-110. (PMID: 8770190)
Nat Chem. 2021 Oct;13(10):963-968. (PMID: 34413500)
Angew Chem Int Ed Engl. 1998 Dec 31;37(24):3340-3350. (PMID: 29711290)
Nat Commun. 2019 Jul 1;10(1):2903. (PMID: 31263102)
معلومات مُعتمدة: R01 GM111805 United States GM NIGMS NIH HHS; R01 GM115185 United States GM NIGMS NIH HHS; R01 GM115805 United States GM NIGMS NIH HHS
تواريخ الأحداث: Date Created: 20240430 Latest Revision: 20240512
رمز التحديث: 20240512
مُعرف محوري في PubMed: PMC11078601
DOI: 10.1021/jacs.4c03360
PMID: 38687173
قاعدة البيانات: MEDLINE
الوصف
تدمد:1520-5126
DOI:10.1021/jacs.4c03360