دورية أكاديمية

Dietary Variation Effect on Life History Traits and Energy Storage in Neotropical Species of Drosophila (Diptera; Drosophilidae).

التفاصيل البيبلوغرافية
العنوان: Dietary Variation Effect on Life History Traits and Energy Storage in Neotropical Species of Drosophila (Diptera; Drosophilidae).
المؤلفون: Dos Santos CH; Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil., Gustani EC; Katholieke Universiteit, Louvain, Belgium., Machado LPB; Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil.; Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil., Mateus RP; Evolutionary Biology Graduate Program, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil. rogeriopmateus@gmail.com.; Laboratory of Genetics and Evolution, Biological Sciences Department, UNICENTRO, Guarapuava, PR, Brazil. rogeriopmateus@gmail.com.
المصدر: Neotropical entomology [Neotrop Entomol] 2024 Jun; Vol. 53 (3), pp. 578-595. Date of Electronic Publication: 2024 Apr 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 101189728 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1678-8052 (Electronic) Linking ISSN: 1519566X NLM ISO Abbreviation: Neotrop Entomol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2012- : Dordrecht : Springer
Original Publication: Londrina, PR : Entomological Society of Brazil, 2001-
مواضيع طبية MeSH: Drosophila*/physiology , Diet* , Life History Traits*, Animals ; Energy Metabolism ; Female ; Male ; Glycogen/metabolism ; Dietary Proteins ; Dietary Carbohydrates
مستخلص: The ability of an organism to respond to nutritional stress can be a plastic character under the action of natural selection, affecting several characteristics, including life history and energy storage. The genus Drosophila (Diptera; Drosophilidae) presents high variability regarding natural resource exploration. However, most works on this theme have studied the model species D. melanogaster Meigen, 1830 and little is known about Neotropical drosophilids. Here we evaluate the effects of three diets, with different carbohydrate-to-protein ratios, on life history (viability and development time) and metabolic pools (triglycerides, glycogen, and total soluble protein contents) of three Neotropical species of Drosophila: D. maculifrons Duda, 1927; D. ornatifrons Duda, 1927, both of the subgenus Drosophila Sturtevant, 1939, and D. willistoni Sturtevant, 1916 of the subgenus Sophophora Sturtevant, 1939. Our results showed that only D. willistoni was viable on all diets, D. maculifrons was not viable on the sugary diet, while D. ornatifrons was barely viable on this diet. The sugary diet increased the development time of D. willistoni and D. ornatifrons, and D. willistoni glycogen content. Thus, the viability of D. maculifrons and D. ornatifrons seems to depend on a certain amount of protein and/or a low concentration of carbohydrate in the diet. A more evident effect of the diets on triglyceride and protein pools was detected in D. ornatifrons, which could be related to the adult attraction to dung and carrion baited pitfall as food resource tested in nature. Our results demonstrated that the evolutionary history and differential adaptations to natural macronutrient resources are important to define the amplitude of response that a species can present when faced with dietary variation.
(© 2024. Sociedade Entomológica do Brasil.)
References: Andersen LH, Kristensen TN, Loeschcke V, Toft S, Mayntz D (2010) Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J Insect Physiol 56:336–340. https://doi.org/10.1016/j.jinsphys.2009.11.006.
Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. https://doi.org/10.1146/annurev-ento-112408-085356.
Bächli G (2023) Taxodros, the database on taxonomy of Drosophilidae. http://www.taxodros.uzh.ch . Accessed 26 September 2023.
Baker KD, Thummel CS (2007) Diabetic larvae and obese flies emerging studies of metabolism in Drosophila. Cell Metab 6:257–266. https://doi.org/10.1016/j.cmet.2007.09.002. (PMID: 10.1016/j.cmet.2007.09.002179085552231808)
Bakker K (1961) An analysis of factors which determine the success in competition for food among larvae of Drosophila melanogaster. Arch Neerl Zool 14:200–281. https://doi.org/10.1163/036551661X00061. (PMID: 10.1163/036551661X00061)
Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson H, Thompson JN (eds) Genetics and biology of Drosophila. Academic Press, New York, pp 345–384.
Bi J, Xiang Y, Chen H, Liu Z, Grönke S, Kühnlein RP, Huang X (2012) Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci 125:3568–3577. https://doi.org/10.1242/jcs.101329. (PMID: 10.1242/jcs.10132922505614)
Brake I, Bächli G (2008) Drosophilidae (Diptera). Apollo Books, Stenstrup, World catalogue of insects. (PMID: 10.1163/9789004261037)
Brito da Cunha A, El-Tabey Shehata AM, de Oliveira W (1957) A study of the diets and nutritional preferences of tropical species of Drosophila. Ecology 38:98–106. https://doi.org/10.2307/1932131. (PMID: 10.2307/1932131)
Bruce KD, Hoxha S, Carvalho GB et al (2013) High carbohydrate–low protein consumption maximizes Drosophila lifespan. Exp Gerontol 48:1129–1135. https://doi.org/10.1016/j.exger.2013.02.003. (PMID: 10.1016/j.exger.2013.02.003234030403687007)
Cavasini R, Buschini MLT, Machado LPB, Mateus RP (2014) Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies. Braz J Biol 74:761–768. https://doi.org/10.1590/1519-6984.00113. (PMID: 10.1590/1519-6984.0011325627584)
Chippindale A, Chu TJF, Rose MR (1996) Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution 50:753–766. https://doi.org/10.1111/j.1558-5646.1996.tb03885.x. (PMID: 10.1111/j.1558-5646.1996.tb03885.x28568920)
Chng WA, Hietakangas V, Lemaitre B (2017) Physiological adaptations to sugar intake: new paradigms from Drosophila melanogaster. Trends Endocrinol Metab 28:131–142. https://doi.org/10.1016/j.tem.2016.11.003. (PMID: 10.1016/j.tem.2016.11.00327923532)
Church RB, Robertson FW (1966) A biochemical study of the growth of Drosophila melanogaster. J Exp Zool 162:337–351. https://doi.org/10.1002/jez.1401620309. (PMID: 10.1002/jez.1401620309)
Conner JK, Hartl DL (2004) A primer of ecological genetics. Sunderland: Sinauer Associates, Sunderland.
De Panis D, Dopazo H, Bongcam-Rudloff E, Conesa A, Hasson E (2022) Transcriptional responses are oriented towards different components of the rearing environment in two Drosophila sibling species. BMC Genom 23:1–15. https://doi.org/10.1186/s12864-022-08745-9. (PMID: 10.1186/s12864-022-08745-9)
Dennis RL, Dapporto L, Fattorini S, Cook LM (2011) The generalism–specialism debate: the role of generalists in the life and death of species. Biol J Linn Soc Lond 104:725–737. https://doi.org/10.1111/j.1095-8312.2011.01789.x. (PMID: 10.1111/j.1095-8312.2011.01789.x)
Djawdan M, Chippindale AK, Rose MR, Bradley TJ (1998) Metabolic reserves and evolved stress resistance in Drosophila melanogaster. Physiol Zool 71:584–594. https://doi.org/10.1086/515963. (PMID: 10.1086/5159639754535)
Dobzhansky T, Powell JR (1975) The willistoni group of sibling species of Drosophila. In: King RC (ed) Handbook of Genetics. Plenum Publishing Corporation, New York, pp 589–622.
Döge JS, Valente VLS, Hofmann PRP (2008) Drosophilids (Diptera) from an Atlantic Forest Area in Santa Catarina, Southern Brazil. Rev Bras Entomol 52:615–624. https://doi.org/10.1590/S0085-56262008000400013. (PMID: 10.1590/S0085-56262008000400013)
Flatt T (2020) Life-histoty and the genetics os fitness components in Drosophila melanogaster. Genetics 214:3–48. https://doi.org/10.1534/genetics.119.300160. (PMID: 10.1534/genetics.119.30016031907300)
Flatt T, Heyland A (2011) Mechanisms of life history evolution. Oxford University Press, Oxford, The Genetics and Physiology of Life History Traits and Trade-Offs. (PMID: 10.1093/acprof:oso/9780199568765.001.0001)
Flatt T, Tu MP, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27:999–1010. https://doi.org/10.1002/bies.20290. (PMID: 10.1002/bies.2029016163709)
Flatt T, Amdam GV, Kirkwood TB, Omholt SW (2013) Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Q Rev Biol 88:185–218. https://doi.org/10.1086/671484. (PMID: 10.1086/67148424053071)
Freire-Maia N, Pavan C (1949) Introdução Ao Estudo Da Drosófila. Cultus 1:3–69.
Gáliková M, Diesner M, Klepsatel P et al (2015) Energy homeostasis control in Drosophila adipokinetic hormone mutants. Genetics 201:665–683. https://doi.org/10.1534/genetics.115.178897. (PMID: 10.1534/genetics.115.178897262754224596676)
Goñi B, Remedios M, González-Vainer P, Martínez M, Vilela CR (2012) Species of Drosophila (Diptera: Drosophilidae) attracted to dung and carrion baited pitfall traps in the Uruguayan Eastern Serranías. Zoologia 29:308–317. https://doi.org/10.1590/S1984-46702012000400004. (PMID: 10.1590/S1984-46702012000400004)
Gottschalk MS, De Toni DC, Valente VLS, Hofmann PRP (2007) Changes in Brazilian Drosophilidae (Diptera) assemblages across an urbanisation gradient. Neotrop Entomol 36:848–862. https://doi.org/10.1590/S1519-566X2007000600005. (PMID: 10.1590/S1519-566X200700060000518246258)
Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13:603–606. https://doi.org/10.1016/S0960-9822(03)00175-1. (PMID: 10.1016/S0960-9822(03)00175-112676093)
Grönke S, Müller G, Hirsch J et al (2007) Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5:e137. https://doi.org/10.1371/journal.pbio.0050137. (PMID: 10.1371/journal.pbio.0050137174881841865564)
Gustani EC, Oliveira APF, Santos MH, Machado LPB, Mateus RP (2015) Demographic structure and evolutionary history of Drosophila ornatifrons Diptera, Drosophilidae) from Atlantic Forest of Southern Brazil. Zool Sci 32:141–150. https://doi.org/10.2108/zs140062. (PMID: 10.2108/zs140062)
Gutierrez E, Wiggins D, Fielding B, Gould AP (2006) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–280. https://doi.org/10.1038/nature05382. (PMID: 10.1038/nature0538217136098)
Gutzeit HO, Zissler D, Grau V, Liphardt M, Heinrich UR (1994) Glycogen stores in mature ovarian follicles and young embryos of Drosophila: ultrastructural changes and some biochemical correlates. Eur J Cell Biol 63:52–60. (PMID: 8005105)
Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: the MCM Cglmm R package. J Stat Softw 33:1–22. https://doi.org/10.18637/jss.v033.i02. (PMID: 10.18637/jss.v033.i02)
Heier C, Kühnlein RP (2018) Triacylglycerol metabolism in Drosophila melanogaster. Genetics 210:1163–1184. https://doi.org/10.1534/genetics.118.301583. (PMID: 10.1534/genetics.118.301583305231676283168)
Hoang K, Matzkin LM, Bono JM (2015) Transcriptional variation associated with cactus host plant adaptation in Drosophila mettleri populations. Mol Ecol 24:5186–5199. https://doi.org/10.1111/mec.13388. (PMID: 10.1111/mec.1338826384860)
Hochmüller CJC, Lopes-Da-Silva M, Valente VLS, Schmitz HJ (2010) The Drosophilid fauna of the transition between the Pampa and Atlantic Forest biomes in the state of Rio Grande do Sul, Southern Brazil: first records. Pap Avulsos Zool 50:285–295. https://doi.org/10.1590/S0031-10492010001900001. (PMID: 10.1590/S0031-10492010001900001)
Hoffmann AA, Harshman LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity 83:637–643. https://doi.org/10.1046/j.1365-2540.1999.00649.x. (PMID: 10.1046/j.1365-2540.1999.00649.x10651907)
Hughes KA, Leips J (2017) Pleiotropy, constraint, and modularity in the evolution of life histories: insights from genomic analyses. Ann N Y Acad Sci 1389:76–91. https://doi.org/10.1111/nyas.13256. (PMID: 10.1111/nyas.1325627936291)
Jensen K, Mcclure C, Priest NK, Hunt J (2015) Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14:605–615. https://doi.org/10.1111/acel.12333. (PMID: 10.1111/acel.12333258081804531074)
Kaneshiro KY (1969) A study of the relationships of Hawaiian Drosophila species based on the external male genitalia. Univ Texas Publ 6918:55–70.
Kim KE, Jang T, Lee KP (2020) Combined effects of temperature and macronutrient balance on life-history traits in Drosophila melanogaster: implications for life-history trade-offs and fundamental niche. Oecologia 193:299–309. https://doi.org/10.1007/s00442-020-04666-0. (PMID: 10.1007/s00442-020-04666-032418116)
Koerte S, Keesey IW, Easson MLE, Gershenzon J, Hansson BS, Knaden M (2020) Variable dependency on associated yeast communities influences host range in Drosophila species. Oikos 129:964–982. https://doi.org/10.1111/oik.07180. (PMID: 10.1111/oik.07180)
Kohyama-Koganeya A, Kim YJ, Miura M, Hirabayashi Y (2008) A Drosophila orphan G protein-coupled receptor BOSS functions as a glucose-responding receptor: loss of boss causes abnormal energy metabolism. Proc Natl Acad Sci U S A 105:15328–15333. https://doi.org/10.1073/pnas.0807833105. (PMID: 10.1073/pnas.0807833105188321802563099)
Krijger CL, Peters YC, Sevenster JG (2001) Competitive ability of neotropical Drosophila predicted from larval development times. Oikos 92:325–332. https://doi.org/10.1034/j.1600-0706.2001.920215.x. (PMID: 10.1034/j.1600-0706.2001.920215.x)
Kristensen TN, Overgaard J, Loeschcke V, Mayntz D (2011) Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol Lett 7:269–272. https://doi.org/10.1098/rsbl.2010.0872. (PMID: 10.1098/rsbl.2010.087220980292)
Law JH, Wells MA (1989) Insects as biochemical models. J Biol Chem 264:16335–16338. https://doi.org/10.1016/S0021-9258(19)84707-5. (PMID: 10.1016/S0021-9258(19)84707-52674129)
Lee KP, Simpson SJ, Clissold FJ et al (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci U S A 105:2498–2503. https://doi.org/10.1073/pnas.0710787105. (PMID: 10.1073/pnas.0710787105182683522268165)
Levot GW, Brown KR, Shipp E (1979) Larval growth of some calliphorid and sarcophagid Diptera. Bull Entomol Res 69:469–475. https://doi.org/10.1017/S0007485300018976. (PMID: 10.1017/S0007485300018976)
Loxdale HD, Harvey JA (2016) The ‘generalism’ debate: misinterpreting the term in the empirical literature focusing on dietary breadth in insects. Biol J Linn Soc 119:265–282. https://doi.org/10.1111/bij.12816. (PMID: 10.1111/bij.12816)
Machado LPB, Silva DC, Simão DP, Mateus RP (2012) Spatial variation of genetic diversity in Drosophila species from two different South America environments. In: Caliskan M (ed) Genetic Variation in Animals. IntechOpen, Rijeka, pp 45–62. https://doi.org/10.5772/32971.
Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:1305–1311. https://doi.org/10.1371/journal.pbio.0030223. (PMID: 10.1371/journal.pbio.0030223)
Mateus RP, Buschini MLT, Sene FM (2006) The Drosophila community in xerophytic vegetations of the upper Parana-Paraguay river basin. Braz J Biol 66:719–729. https://doi.org/10.1590/S1519-69842006000400016. (PMID: 10.1590/S1519-6984200600040001616906304)
Mateus RP, Machado LPB, Simão-Silva DP (2018) Drosophila (Diptera: Drosophilidae) survey in an - island of xerophytic vegetation within the Atlantic Forest biome, with emphasis on the repleta species group. Stud Neotrop Fauna Environ 53:152–161. https://doi.org/10.1080/01650521.2018.1438082. (PMID: 10.1080/01650521.2018.1438082)
Mateus RP, Nazario-Yepiz NO, Ibarra-Laclette E, Ramirez Loustalot-Laclette M, Markow TA (2019) Developmental and transcriptomal responses to seasonal dietary shifts in the cactophilic Drosophila mojavensis of North America. J Hered 110:58–67. https://doi.org/10.1093/jhered/esy056. (PMID: 10.1093/jhered/esy05630371801)
Mateus RP, Ferreira MC, Machado LPB (2021) Drosophila fauna from an interior Atlantic Forest fragment with xerophytic enclave in Southern Brazil. Drosoph Inf Serv 104:30–34.
Matsuda H, Yamada T, Yoshida M, Nishimura T (2015) Flies without trehalose. J Biol Chem 290:1244–1255. https://doi.org/10.1074/jbc.M114.619411. (PMID: 10.1074/jbc.M114.61941125451929)
Mattila J, Hietakangas V (2017) Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics 207:1231–1253. https://doi.org/10.1534/genetics.117.199885. (PMID: 10.1534/genetics.117.199885292037015714444)
Matzkin LM, Mutsaka K, Johnson S, Markow TA (2009) Metabolic pools differ among ecologically diverse Drosophila species. J Insect Physiol 55:1145–50. https://doi.org/10.1016/j.jinsphys.2009.08.008. (PMID: 10.1016/j.jinsphys.2009.08.00819698720)
Matzkin LM, Johnson S, Paight C, Bozinovic G, Markow TA (2011) Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J Nutr 141:1127–1133. https://doi.org/10.3945/jn.111.138438. (PMID: 10.3945/jn.111.13843821525254)
Matzkin LM, Johnson S, Paight C, Markow TA (2013) Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster. PLoS One 8:e59530. https://doi.org/10.1371/journal.pone.0059530. (PMID: 10.1371/journal.pone.0059530235556953608729)
Medeiros HF, Klaczko LB (2004) How many species of Drosophila (Diptera, Drosophilidae) remain to be described in the forests of São Paulo, Brazil? Species lists of three forest remnants. Biota Neotrop 4:1–12. https://doi.org/10.1590/S1676-06032004000100005. (PMID: 10.1590/S1676-06032004000100005)
Melo D, Garcia G, Hubbe A, Assis AP, Marroig G (2016) EvolQG - An R package for evolutionary quantitative genetics. F1000research 4:1–12. https://doi.org/10.5281/zenodo.55121. (PMID: 10.5281/zenodo.55121)
Mirth CK, Riddiford LM (2007) Size assessment and growth control: how adult size is determined in insects. Bioessays 29:344–355. https://doi.org/10.1002/bies.20552. (PMID: 10.1002/bies.2055217373657)
Musselman LP, Kühnlein RP (2018) Drosophila as a model to study obesity and metabolic disease. J Exp Biol 221:jeb163881. https://doi.org/10.1242/jeb.163881. (PMID: 10.1242/jeb.16388129514880)
Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, Baranski TJ (2011) A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Models Mech 4:842–849. https://doi.org/10.1242/dmm.007948. (PMID: 10.1242/dmm.007948)
Nazario-Yepiz NO, Laclette MRL, Markow TA (2017) Drosophila species as models for nutritional studies: development, metabolic pools on diet with contrasting relative sugar: protein ratios. J Nutr Biol 1:101–107. https://doi.org/10.18314/jnb.v3i1.108. (PMID: 10.18314/jnb.v3i1.108)
Nazario-Yepiz NO, Loustalot-Laclette MR, Carpinteyro-Ponce J, Abreu-Goodger C, Markow TA (2017b) Transcriptional responses of ecologically diverse Drosophila species to larval diets differing in relative sugar and protein ratios. PLoS ONE 12:e0183007. https://doi.org/10.1371/journal.pone.0183007. (PMID: 10.1371/journal.pone.0183007288326475568408)
Nelson DL, Cox MM (2014) Princípios de bioquímica de Lehninger. Artmed, Porto Alegre.
Ng’oma E, Fidelis W, Middleton KM, King EG (2018) The evolutionary potential of diet-dependent effects on lifespan and fecundity in a multi-parental population of Drosophila melanogaster. Heredity 122:582–594. https://doi.org/10.1038/s41437-018-0154-2. (PMID: 10.1038/s41437-018-0154-2303562256461879)
Owusu-Ansah E, Perrimon N (2014) Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Dis Models Mech 7:343–350. https://doi.org/10.1242/dmm.012989. (PMID: 10.1242/dmm.012989)
Pereira MAQR, Vilela CR, Sene FM (1983) Notes on breeding and feeding sites of some species of the repleta group of the genus Drosophila (Diptera, Drosophilidae). Ciênc Cult 35:1313–1319.
Poças GM, Crosbie AE, Mirth CK (2020) When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J Insect Physiol 139:104051. https://doi.org/10.1016/j.jinsphys.2020.104051. (PMID: 10.1016/j.jinsphys.2020.10405132229143)
Poppe JL, Schmitz HJ, Grimaldi D, Valente VLS (2014) High diversity of Drosophilidae (Insecta, Diptera) in the Pampas Biome of South America, with descriptions of new Rhinoleucophenga species. Zootaxa 3779:215–245. https://doi.org/10.11646/zootaxa.3779.2.6. (PMID: 10.11646/zootaxa.3779.2.624871722)
Prasad NG, Joshi A (2003) What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J Genet 82:45–76. https://doi.org/10.1007/BF02715881. (PMID: 10.1007/BF0271588114631102)
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Reis T (2016) Effects of synthetic diet enriched in specific nutrients on Drosophila development, body fat, and lifespan. PLoS One 11:e0146758. https://doi.org/10.1371/journal.pone.0146758. (PMID: 10.1371/journal.pone.0146758267416924704830)
Ribeiro LB, Proença CEB, Tidon R (2023) Host preferences shown by Drosophilids (Diptera) in a commercial fruit and vegetable distribution center follow the wild Neotropical pattern. Insects 14:375. https://doi.org/10.3390/insects14040375. (PMID: 10.3390/insects140403753710319010141734)
Robe LJ, Valente VL, Budnik M, Loreto ELS (2005) Molecular phylogeny of the subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on Neotropical species and groups: a nuclear versus mitochondrial gene approach. Mol Phylogenet Evol 36:623–640. https://doi.org/10.1016/j.ympev.2005.05.005. (PMID: 10.1016/j.ympev.2005.05.00515970444)
Robe LJ, Loreto ELS, Valente VLS (2010) Radiation of the “Drosophila” subgenus (Drosophilidae, Diptera) in the Neotropics. J Zool Syst Evol Res 48:310–321. https://doi.org/10.1111/j.1439-0469.2009.00563.x. (PMID: 10.1111/j.1439-0469.2009.00563.x)
Robe LJ, Valente VLS, Loreto ELS (2010) Phylogenetic relationships and macro-evolutionary patterns within the Drosophila tripunctata ‘“radiation”’ (Diptera: Drosophilidae). Genetica 138:725–735. https://doi.org/10.1007/s10709-010-9453-0. (PMID: 10.1007/s10709-010-9453-020376692)
Roff DA (1992) The evolution of life histories - theory and analysis. Chapman and Hall, New York.
Roff DA (2007) Contributions of genomics to life-history theory. Nat Rev Genet 8:116–125. https://doi.org/10.1038/nrg2040. (PMID: 10.1038/nrg204017230198)
Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447. https://doi.org/10.1111/j.1420-9101.2006.01255.x. (PMID: 10.1111/j.1420-9101.2006.01255.x17305809)
Rohde C, Valente VLS (2012) Three decades of studies on chromosomal polymorphism of Drosophila willistoni and description of fifty different rearrangements. Genet Mol Biol 35:966–979. https://doi.org/10.1590/S1415-47572012000600012. (PMID: 10.1590/S1415-47572012000600012234119973571430)
Russo CAM, Mello B, Frazão A, Voloch CM (2013) Phylogenetic analysis and a time tree for a large drosophilid data set (Diptera: Drosophilidae). Zool J Linn Soc 169:765–775. https://doi.org/10.1111/zoj12062. (PMID: 10.1111/zoj12062)
Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806. https://doi.org/10.1038/414799a. (PMID: 10.1038/414799a11742412)
Salzano FM (1955) Chromosomal polymorphism in two species of the guarani group of Drosophila. Chromosoma 7:39–50. (PMID: 10.1007/BF00329718)
Santos RCO, Vilela CR (2005) Breeding sites of Neotropical Drosophilidae (Diptera): IV. Living and fallen flowers of Sessea brasiliensis and Cestrum spp. (Solanaceae). Rev Bras Entomol 49:544–551. (PMID: 10.1590/S0085-56262005000400015)
Santos CH, Santos KAV, Machado LPB, Mateus RP (2023) Life history traits and metabolic pool variation in Neotropical species of Drosophila (Diptera, Drosophilidae). Zool St 62:56. https://doi.org/10.6620/ZS.2023.62-56. (PMID: 10.6620/ZS.2023.62-56)
Simpson SJ, Raubenheimer D (2009) Macronutrient balance and lifespan. Aging 1:875–880. (PMID: 10.18632/aging.100098201575612815731)
Sisodia S, Singh BN (2012) Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae. PLoS One 7:e46131. https://doi.org/10.1371/journal.pone.0046131. (PMID: 10.1371/journal.pone.0046131230496933462212)
Skorupa DA, Dervisefendic A, Zwiener J, Pletcher SD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478–490. https://doi.org/10.1111/j.1474-9726.2008.00400.x. (PMID: 10.1111/j.1474-9726.2008.00400.x18485125)
Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268. https://doi.org/10.2307/2389364. (PMID: 10.2307/2389364)
Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, Oxford.
Tidon R (2006) Relationships between drosophilids (Diptera, Drosophilidae) and the environment in two contrasting tropical vegetations. Biol J Linn Soc 87:233–247. https://doi.org/10.1111/j.1095-8312.2006.00570.x. (PMID: 10.1111/j.1095-8312.2006.00570.x)
Trava BM (2014) Morfometria da asa e do edeago de duas espécies de Drosophila endêmicas da América do Sul. Dissertation, State University of Center-West.
Ullyett GC (1950) Competition for food and allied phenomena in sheep-blowfly populations. Philos Trans R Soc Lond, B, Biol Sci 234:77–174. https://doi.org/10.1098/rstb.1950.0001. (PMID: 10.1098/rstb.1950.0001)
Val FC, Vilela CR, Marques MD (1981) Drosophilidae of the Neotropical Region. In: Ashburner M, Carson HL, Thompson N (eds) The Genetics and Biology of Drosophila. New York Academic Press, New York, pp 123–168.
Valadão H, Proença CEB, Kuhlmann MP, Harris SA, Tidon R (2019) Fruit-breeding drosophilids (Diptera) in the Neotropics: playing the field and specialising in generalism? Ecol Entomol 44:721–737. https://doi.org/10.1111/een.12769. (PMID: 10.1111/een.12769)
Valer FB, Bernardi E, Mendes MF, Blauth ML, Gottschalk MS (2016) Diversity and associations between Drosophilidae (Diptera) species and Basidiomycetes in a Neotropical forest. An Acad Bras Cienc 88:705–718. https://doi.org/10.1590/0001-3765201620150366. (PMID: 10.1590/0001-376520162015036627142546)
Van Der Linde K, Houle D, Spicer GS, Steppan SJ (2010) A supermatrix-based molecular phylogeny of the family Drosophilidae. Genet Res 92:25–38. https://doi.org/10.1017/S001667231000008X. (PMID: 10.1017/S001667231000008X)
Vilela CR, Bächli G (1990) Taxonomics studies on Neotropical species of seven genera of Drosophilidae (Diptera). Mitt Entomol Ges Basel 63:1–332.
Yamada T, Habara O, Kubo H, Nishimura T (2018) Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development 145:dev158865. https://doi.org/10.1242/dev.158865. (PMID: 10.1242/dev.15886529467247)
Yamada T, Habara O, Yoshii Y, Matsushita R, Kubo H, Nojima Y, Nishimura T (2019) The role of glycogen in development and adult fitness in Drosophila. Development 146:dev176149. https://doi.org/10.1242/dev.176149. (PMID: 10.1242/dev.17614930918052)
Yotoko KS, Medeiros HF, Solferini VN, Klaczko LB (2003) A molecular study of the systematics of the Drosophila tripunctata group and the tripunctata radiation. Mol Phylogenet Evol 28:614–619. https://doi.org/10.1016/S1055-7903(03)00218-5. (PMID: 10.1016/S1055-7903(03)00218-512927144)
Zajitschek F, Zajitschek SRK, Canton C, Georgolopoulos G, Friberg U, Maklakov AA (2016) Evolution under dietary restriction increases male reproductive performance without survival cost. Proc Royal Soc B 283:20152726. https://doi.org/10.1098/rspb.2015.2726. (PMID: 10.1098/rspb.2015.2726)
Zanini R, Deprá M, Valente VLS (2015) Can sibling species of the Drosophila willistoni subgroup be recognized through combined microscopy techniques? Rev Bras Entomol 59:323–331. https://doi.org/10.1016/j.rbe.2015.09.006. (PMID: 10.1016/j.rbe.2015.09.006)
Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Evol Syst 32:95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006. (PMID: 10.1146/annurev.ecolsys.32.081501.114006)
معلومات مُعتمدة: 5773/17 Fundação Araucária; Master Degree Scholarship Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Drosophila maculifrons; Drosophila ornatifrons; Drosophila willistoni; Development time; Metabolic molecules; Viability
المشرفين على المادة: 9005-79-2 (Glycogen)
0 (Dietary Proteins)
0 (Dietary Carbohydrates)
تواريخ الأحداث: Date Created: 20240430 Date Completed: 20240506 Latest Revision: 20240820
رمز التحديث: 20240821
DOI: 10.1007/s13744-024-01147-4
PMID: 38687423
قاعدة البيانات: MEDLINE
الوصف
تدمد:1678-8052
DOI:10.1007/s13744-024-01147-4