دورية أكاديمية

Gray matter volume in women with the BRCA mutation with and without ovarian removal: evidence for increased risk of late-life Alzheimer's disease or dementia.

التفاصيل البيبلوغرافية
العنوان: Gray matter volume in women with the BRCA mutation with and without ovarian removal: evidence for increased risk of late-life Alzheimer's disease or dementia.
المؤلفون: Witt ST, Brown A; Psychology, University of Toronto, Toronto, ON, Canada., Gravelsins L; Psychology, University of Toronto, Toronto, ON, Canada., Engström M, Classon E; Department of Acute Internal Medicine and Geriatrics, and Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine, Linköping University, Linköping, Sweden., Lykke N; Thematic Studies, Linköping University, Sweden., Åvall-Lundqvist E; Department of Oncology in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden., Theodorsson E; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden., Ernerudh J; Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden., Kjölhede P; Department of Obstetrics and Gynecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden., Einstein G
المصدر: Menopause (New York, N.Y.) [Menopause] 2024 Jul 01; Vol. 31 (7), pp. 608-616. Date of Electronic Publication: 2024 Apr 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott-Raven Publishers Country of Publication: United States NLM ID: 9433353 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1530-0374 (Electronic) Linking ISSN: 10723714 NLM ISO Abbreviation: Menopause Subsets: MEDLINE
أسماء مطبوعة: Publication: Hagerstown, MD : Lippincott-Raven Publishers
Original Publication: New York, NY : Raven Press, c1994-
مواضيع طبية MeSH: Alzheimer Disease*/genetics , Gray Matter*/pathology , Gray Matter*/diagnostic imaging , Magnetic Resonance Imaging* , Mutation* , Dementia*/genetics, Humans ; Female ; Middle Aged ; Cross-Sectional Studies ; Ovariectomy/adverse effects ; Aged ; Salpingo-oophorectomy ; Estradiol/blood ; Genes, BRCA1 ; Estrogen Replacement Therapy ; Genes, BRCA2 ; Menopause ; Breast Neoplasms/genetics ; Breast Neoplasms/surgery ; Breast Neoplasms/pathology ; Risk Factors
مستخلص: Objective: Ovarian removal prior to spontaneous/natural menopause (SM) is associated with increased risk of late life dementias including Alzheimer's disease. This increased risk may be related to the sudden and early loss of endogenous estradiol. Women with breast cancer gene mutations (BRCAm) are counseled to undergo oophorectomy prior to SM to significantly reduce their risk of developing breast, ovarian, and cervical cancers. There is limited evidence of the neurological effects of ovarian removal prior to the age of SM showing women without the BRCAm had cortical thinning in medial temporal lobe structures. A second study in women with BRCAm and bilateral salpingo-oophorectomy (BSO) noted changes in cognition.
Methods: The present, cross-sectional study examined whole-brain differences in gray matter (GM) volume using high-resolution, quantitative magnetic resonance imaging in women with BRCAm and intact ovaries (BRCA-preBSO [study cohort with BRCA mutation prior to oophorectomy]; n = 9) and after surgery with (BSO + estradiol-based therapy [ERT]; n = 10) and without (BSO; n = 10) postsurgical estradiol hormone therapy compared with age-matched women (age-matched controls; n = 10) with their ovaries.
Results: The BRCA-preBSO and BSO groups showed significantly lower GM volume in the left medial temporal and frontal lobe structures. BSO + ERT exhibited few areas of lower GM volume compared with age-matched controls. Novel to this study, we also observed that all three BRCAm groups exhibited significantly higher GM volume compared with age-matched controls, suggesting continued plasticity.
Conclusions: The present study provides evidence, through lower GM volume, to support both the possibility that the BRCAm, alone, and early life BSO may play a role in increasing the risk for late-life dementia. At least for BRCAm with BSO, postsurgical ERT seems to ameliorate GM losses.
Competing Interests: Financial disclosure/conflicts of interest: None reported.
(Copyright © 2024 by The Menopause Society.)
References: Bove R, Secor E, Chibnik LB, et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 2014;82:222–229. doi: 10.1212/WNL.0000000000000033. (PMID: 10.1212/WNL.0000000000000033)
Phung TK, Waltoft BL, Laursen TM, et al. Hysterectomy, oophorectomy and risk of dementia: a nationwide historical cohort study. Dement Geriatr Cogn Disord 2010;30:43–50. doi: 1420-8008/10/0301-0043. (PMID: doi: 1420-8008/10/0301-0043)
Rocca WA, Bower JH, Maraganore DM, et al. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 2007;69:1074–1083.
Sherwin BB. Estrogen and cognitive functioning in women. Endocr Rev 2003;24:133–151. doi: 10.1210/er.2001-0016. (PMID: 10.1210/er.2001-0016)
Gervais NJ, Au A, Almey A, et al. Cognitive markers of dementia risk in middle-aged women with bilateral salpingo-oophorectomy prior to menopause. Neurobiol Aging 2020;94:1–6. doi: 10.1016/j.neurobiolaging.2020.04.019. (PMID: 10.1016/j.neurobiolaging.2020.04.019)
Gervais NJ, Gravelsins L, Brown A, et al. Scene memory and hippocampal volume in middle-aged women with early hormone loss. Neurobiol Aging 2022;117:97–106. doi: 10.1016/j.neurobiolaging.2022.05.003. (PMID: 10.1016/j.neurobiolaging.2022.05.003)
Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E. Perimenopause as a neurological transition state. Nat Rev Endocrinol 2015;11:393–405. doi: 10.1038/nrendo.2015.82. (PMID: 10.1038/nrendo.2015.82)
Donahue JE, Stopa EG, Chorsky RL, et al. Cells containing immunoreactive estrogen receptor-α in the human basal forebrain. Brain Res 2000;856(1–2):142–151. doi: 10.1016/S0006-8993(99)02413-0. (PMID: 10.1016/S0006-8993(99)02413-0)
Österlund MK, Grandien K, Keller E, Hurd YL. The human brain has distinct regional expression patterns of estrogen receptor α mRNA isoforms derived from alternative promoters. J Neurochem 2000;75:1390–1397. doi: 10.1046/j.1471-4159.2000.0751390.x. (PMID: 10.1046/j.1471-4159.2000.0751390.x)
Österlund MK, Gustafsson JÅ, Keller E, Hurd YL. Estrogen receptor beta (ERbeta) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERalpha mRNA. J Clin Endocrinol Metab 2000;85:3840–3846. doi: 10.1210/jcem.85.10.6913. (PMID: 10.1210/jcem.85.10.6913)
Savaskan E, Olivieri G, Meier F, Ravid R, Müller-spahn F. Hippocampal estrogen beta-receptor immunoreactivity is increased in Alzheimer’s disease. Brain Res 2001;908:113–119.
Taylor AH, Al-Azzawi F. Immunolocalisation of oestrogen receptor beta in human tissues. J Mol Endocrinol 2000;24:145–155.
Taber KH, Murphy DD, Blurton-Jones MM, Hurley RA. An update on estrogen: higher cognitive function, receptor mapping, neurotrophic effects. J Neuropsychiatry Clin Neurosci 2001;13:313–317.
Hedges VL, Ebner TJ, Meisel RL, Mermelstein PG. The cerebellum as a target for estrogen action. Front Neuroendocrinol 2012;33:403–411. doi: 10.1016/j.yfrne.2012.08.005. (PMID: 10.1016/j.yfrne.2012.08.005)
Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 2009;19:497–510. doi: 10.1093/cercor/bhn113. (PMID: 10.1093/cercor/bhn113)
Pini L, Pievani M, Bocchetta M, et al. Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev 2016;30:25–48. doi: 10.1016/j.arr.2016.01.002. (PMID: 10.1016/j.arr.2016.01.002)
Thompson PM, Mega MS, Woods RP, et al. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb Cortex 2001;11:1–16. doi: 10.1093/cercor/11.1.1. (PMID: 10.1093/cercor/11.1.1)
Thompson PM, Hayashi KM, de Zubicaray G, et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 2003;23:994–1005. doi: 10.1523/JNEUROSCI.23-03-00994.2003. (PMID: 10.1523/JNEUROSCI.23-03-00994.2003)
Janke AL, de Zubicaray G, Rose SE, Griffin M, Chalk JB, Galloway GJ. 4D deformation modeling of cortical disease progression in Alzheimer's dementia. Magn Reson Med 2001;46:661–666. doi: https://doi.org/10.1002/mrm.1243. (PMID: doi: https://doi.org/10.1002/mrm.1243)
Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021;3:fcab211. doi: 10.1093/braincomms/fcab211. (PMID: 10.1093/braincomms/fcab211)
Eisen A, Lubinski J, Klijn J, et al. Breast cancer risk following bilateral oophorectomy in BRCA1 and BRCA2 mutation carriers: an international case-control study. J Clin Oncol 2005;23:7491–7496. doi: 10.1200/JCO.2004.00.7138. (PMID: 10.1200/JCO.2004.00.7138)
Finch A, Beiner M, Lubinski J, et al. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 mutation. JAMA 2006;296:185–192.
Evans TA, Raina AK, Delacourte A, et al. BRCA1 may modulate neuronal cell cycle re-entry in Alzheimer disease. Int J Med Sci 2007;4:140–145. doi: 10.7150/ijms.4.140. (PMID: 10.7150/ijms.4.140)
Frappart PO, Lee Y, Lamont J, McKinnon PJ. BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 2007;26:2732–2742. doi: 10.1038/sj.emboj.7601703. (PMID: 10.1038/sj.emboj.7601703)
Frappart PO, McKinnon PJ. BRCA2 function and the central nervous system. Cell Cycle 2007;6:2453–2457. doi: 10.4161/cc.6.20.4785. (PMID: 10.4161/cc.6.20.4785)
Genova A, Dix O, Dhillon M. A review on the mutations of the BRCA 1 gene on neurocognitive disorders. 2020;7(February):385–392.
Leung E, Hazrati L-N. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021;3:fcab117. doi: 10.1093/braincomms/fcab117. (PMID: 10.1093/braincomms/fcab117)
Nakamura M, Kaneko S, Dickson DW, Kusaka H. Aberrant accumulation of BRCA1 in Alzheimer disease and other tauopathies. J Neuropathol Exp Neurol 2020;79:22–33. doi: 10.1093/jnen/nlz107. (PMID: 10.1093/jnen/nlz107)
Ratner E, Bala M, Louie-Gao M, Aydin E, Hazard S, Brastianos PK. Increased risk of brain metastases in ovarian cancer patients with BRCA mutations. Gynecol Oncol 2019;153:568–573. doi: 10.1016/j.ygyno.2019.03.004. (PMID: 10.1016/j.ygyno.2019.03.004)
Suberbielle E, Djukic B, Evans M, et al. DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat Commun 2015;6:8897. doi: 10.1038/ncomms9897. (PMID: 10.1038/ncomms9897)
Zeydan B, Tosakulwong N, Schwarz CG, et al. Association of bilateral salpingo-oophorectomy before menopause onset with medial temporal lobe neurodegeneration. JAMA Neurol 2019;76:95–100. doi: 10.1001/jamaneurol.2018.3057. (PMID: 10.1001/jamaneurol.2018.3057)
Duka T, Tasker R, McGowan JF. The effects of 3-week estrogen hormone replacement on cognition in elderly healthy females. Psychopharmacology (Berl) 2000;149:129–139. doi: 10.1007/s002139900324. (PMID: 10.1007/s002139900324)
Joffe H, Hall JE, Gruber S, et al. Estrogen therapy selectively enhances prefrontal cognitive processes: a randomized, double-blind, placebo-controlled study with functional magnetic resonance imaging in perimenopausal and recently postmenopausal women. Menopause 2006;13:411–422. doi: 10.1097/01.gme.0000189618.48774.7b. (PMID: 10.1097/01.gme.0000189618.48774.7b)
Phillips SM, Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 1992;17:485–495. doi: 10.1016/0306-4530(92)90007-T. (PMID: 10.1016/0306-4530(92)90007-T)
Sherwin BB. Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology 1988;13:345–357. doi: 10.1016/0306-4530(88)90060-1. (PMID: 10.1016/0306-4530(88)90060-1)
Warntjes JBM, Leinhard OD, West J, Lundberg P. Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 2008;329:320–329. doi: 10.1002/mrm.21635. (PMID: 10.1002/mrm.21635)
Granberg T, Uppman M, Hashim F, et al. Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study. Am J Neuroradiol 2016;37:1023–1029. doi: 10.3174/ajnr.A4665. (PMID: 10.3174/ajnr.A4665)
Witt ST, van Ettinger-Veenstra H, Salo T, Riedel MC, Laird AR. What executive function network is that? An image-based meta-analysis of network labels. Brain Topogr 2021;34:598–607. doi: 10.1007/s10548-021-00847-z. (PMID: 10.1007/s10548-021-00847-z)
Feng Y, Zhang XD, Zheng G, Zhang LJ. Chemotherapy-induced brain changes in breast cancer survivors: evaluation with multimodality magnetic resonance imaging. Brain Imaging Behav 2019;13:1799–1814. doi: 10.1007/s11682-019-00074-y. (PMID: 10.1007/s11682-019-00074-y)
Warntjes JBM, Engström M, Tisell A, Lundberg P. Brain characterization using normalized quantitative magnetic resonance imaging. PloS One 2013;8:e70864. doi: 10.1371/journal.pone.0070864. (PMID: 10.1371/journal.pone.0070864)
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage 2014;92:381–397. doi: 10.1016/j.neuroimage.2014.01.060. (PMID: 10.1016/j.neuroimage.2014.01.060)
Fossati P, Radtchenko A, Boyer P. Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 2004;14(Suppl. 5):S503–S510. doi: 10.1016/j.euroneuro.2004.09.001. (PMID: 10.1016/j.euroneuro.2004.09.001)
Terribilli D, Schaufelberger MS, Duran FLS, et al. Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol Aging 2011;32:354–368. doi: 10.1016/j.neurobiolaging.2009.02.008. (PMID: 10.1016/j.neurobiolaging.2009.02.008)
Arenaza-Urquijo EM, Landeau B, La Joie R, et al. Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. Neuroimage 2013;83:450–457. doi: 10.1016/j.neuroimage.2013.06.053. (PMID: 10.1016/j.neuroimage.2013.06.053)
Roe JM, Vidal-Piñeiro D, Sørensen Ø, et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer's disease. Nat Commun 2021;12:721. doi: 10.1038/s41467-021-21057-y. (PMID: 10.1038/s41467-021-21057-y)
Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry 2008;79:630–635. doi: 10.1136/jnnp.2007.124149. (PMID: 10.1136/jnnp.2007.124149)
Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci 2002;99:4703–4707. doi: 10.1073/pnas.052587399. (PMID: 10.1073/pnas.052587399)
Tyrer A, Gilbert JR, Adams S, et al. Lateralized memory circuit dropout in Alzheimer's disease patients. Brain Commun 2020;2:fcaa212. doi: 10.1093/braincomms/fcaa212. (PMID: 10.1093/braincomms/fcaa212)
Touroutoglou A, Dickerson BC. Cingulate-Centered Large-Scale Networks: Normal Functions, Aging, and Neurodegenerative Disease . Vol 166. 1st ed. Elsevier B.V.; 2019. doi:10.1016/B978-0-444-64196-0.00008-X.
Beckmann M, Johansen-Berg H, Rushworth MF. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci 2009;29:1175–1190. doi: 10.1523/JNEUROSCI.3328-08.2009. (PMID: 10.1523/JNEUROSCI.3328-08.2009)
Ferreri F, Vecchio F, Vollero L, et al. Sensorimotor cortex excitability and connectivity in Alzheimer's disease: a TMS-EEG Co-registration study. Hum Brain Mapp 2016;37:2083–2096. doi: 10.1002/hbm.23158. (PMID: 10.1002/hbm.23158)
Agosta F, Rocca MA, Pagani E, et al. Sensorimotor network rewiring in mild cognitive impairment and Alzheimer's disease. Hum Brain Mapp 2010;31:515–525. doi: 10.1002/hbm.20883. (PMID: 10.1002/hbm.20883)
Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 2008;9:856–869. doi: 10.1038/nrn2478. (PMID: 10.1038/nrn2478)
Cona G, Semenza C. Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci Biobehav Rev 2017;72:28–42. doi: 10.1016/j.neubiorev.2016.10.033. (PMID: 10.1016/j.neubiorev.2016.10.033)
Cañas A, Juncadella M, Lau R, Gabarrós A, Hernández M. Working memory deficits after lesions involving the supplementary motor area. Front Psychol 2018;9:765. doi: 10.3389/fpsyg.2018.00765. (PMID: 10.3389/fpsyg.2018.00765)
Gautam P, Anstey KJ, Wen W, Sachdev PS, Cherbuin N. Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults. Behav Brain Res 2015;287:331–339. doi: 10.1016/j.bbr.2015.03.018. (PMID: 10.1016/j.bbr.2015.03.018)
Green S, Blackmon K, Thesen T, et al. Parieto-frontal gyrification and working memory in healthy adults. Brain Imaging Behav 2018;12:303–308. doi: 10.1007/s11682-017-9696-9. (PMID: 10.1007/s11682-017-9696-9)
Callicott JH, Mattay VS, Bertolino A, et al. Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 1999;9:20–26. doi: 10.1093/cercor/9.1.20. (PMID: 10.1093/cercor/9.1.20)
Coull JT, Frith CD, Frackowiak RSJ, Grasby PM. A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 1996;34:1085–1095. doi: 10.1016/0028-3932(96)00029-2. (PMID: 10.1016/0028-3932(96)00029-2)
Han SD, Houston WS, Jak AJ, et al. Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol Aging 2007;28:238–247. doi: https://doi.org/10.1016/j.neurobiolaging.2005.12.013. (PMID: doi: https://doi.org/10.1016/j.neurobiolaging.2005.12.013)
Brown A, Gervais NJ, Rieck J, et al. Women's brain health: midlife ovarian removal affects associative memory. Mol Neurobiol 2023;60:6145–6159. doi: 10.1007/s12035-023-03424-6. (PMID: 10.1007/s12035-023-03424-6)
Shahshahani L, King M, Nettekoven C, Ivry R, Diedrichsen J. Selective recruitment: evidence for task-dependent gating of inputs to the cerebellum. bioRxiv . January 2023:January 25, 2023.525395 . doi: 10.1101/2023.01.25.525395. (PMID: 10.1101/2023.01.25.525395)
Bernard JA. Don't forget the little brain: a framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev 2022;137:104639. doi: 10.1016/j.neubiorev.2022.104639. (PMID: 10.1016/j.neubiorev.2022.104639)
Gellersen HM, Guo CC, O'callaghan C, Tan RH, Sami S, Hornberger M. Cerebellar atrophy in neurodegeneration-a meta-analysis. J Neurol Neurosurg Psychiatry 2017;88:780–788. doi: 10.1136/jnnp-2017-315607. (PMID: 10.1136/jnnp-2017-315607)
King M, Hernandez-castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci 2019;22:1371–1378 http://dx.doi.org/10.1038/s41593-019-0436-x. (PMID: 10.1038/s41593-019-0436-x)
Cabeza R, Albert M, Belleville S, et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat Rev Neurosci 2018;19:701–710. doi: 10.1038/s41583-018-0068-2. (PMID: 10.1038/s41583-018-0068-2)
المشرفين على المادة: 4TI98Z838E (Estradiol)
تواريخ الأحداث: Date Created: 20240430 Date Completed: 20240628 Latest Revision: 20240703
رمز التحديث: 20240704
DOI: 10.1097/GME.0000000000002361
PMID: 38688467
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-0374
DOI:10.1097/GME.0000000000002361