دورية أكاديمية

Geographic variation of mutagenic exposures in kidney cancer genomes.

التفاصيل البيبلوغرافية
العنوان: Geographic variation of mutagenic exposures in kidney cancer genomes.
المؤلفون: Senkin S; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Moody S; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Díaz-Gay M; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA., Abedi-Ardekani B; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Cattiaux T; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Ferreiro-Iglesias A; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Wang J; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Fitzgerald S; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Kazachkova M; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA., Vangara R; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA., Le AP; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Bergstrom EN; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA., Khandekar A; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA., Otlu B; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.; Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey., Cheema S; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Latimer C; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Thomas E; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Atkins JR; Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK., Smith-Byrne K; Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK., Cortez Cardoso Penha R; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Carreira C; Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Chopard P; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Gaborieau V; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Keski-Rahkonen P; Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Jones D; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Teague JW; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Ferlicot S; Service d'Anatomie Pathologique, Assistance Publique-Hôpitaux de Paris, Univeristé Paris-Saclay, Le Kremlin-Bicêtre, France., Asgari M; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran., Sangkhathat S; Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand., Attawettayanon W; Division of Urology, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand., Świątkowska B; Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland., Jarmalaite S; Laboratory of Genetic Diagnostic, National Cancer Institute, Vilnius, Lithuania.; Department of Botany and Genetics, Institute of Biosciences, Vilnius University, Vilnius, Lithuania., Sabaliauskaite R; Laboratory of Genetic Diagnostic, National Cancer Institute, Vilnius, Lithuania., Shibata T; Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.; Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan., Fukagawa A; Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan.; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan., Mates D; Occupational Health and Toxicology Department, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania., Jinga V; Urology Department, Carol Davila University of Medicine and Pharmacy, Prof. Dr. Th. Burghele Clinical Hospital, Bucharest, Romania., Rascu S; Urology Department, Carol Davila University of Medicine and Pharmacy, Prof. Dr. Th. Burghele Clinical Hospital, Bucharest, Romania., Mijuskovic M; Clinic of Nephrology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia., Savic S; Department of Urology, University Hospital Dr D. Misovic Clinical Center, Belgrade, Serbia., Milosavljevic S; International Organization for Cancer Prevention and Research, Belgrade, Serbia., Bartlett JMS; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK., Albert M; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.; Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada., Phouthavongsy L; Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada., Ashton-Prolla P; Experimental Research Center, Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.; Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil., Botton MR; Transplant Immunology and Personalized Medicine Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil., Silva Neto B; Service of Urology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.; Post-Graduate Program in Medicine: Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil., Bezerra SM; Department of Anatomic Pathology, A. C. Camargo Cancer Center, São Paulo, Brazil., Curado MP; Department of Epidemiology, A. C. Camargo Cancer Center, São Paulo, Brazil., Zequi SC; Department of Urology, A. C. Camargo Cancer Center, São Paulo, Brazil.; National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, A.C. Camargo Cancer Center, São Paulo, Brazil.; Latin American Renal Cancer Group (LARCG), São Paulo, Brazil.; Department of Surgery, Division of Urology, Sao Paulo Federal University (UNIFESP), São Paulo, Brazil., Reis RM; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.; Life and Health Sciences Research Institute (ICVS), School of Medicine, Minho University, Braga, Portugal., Faria EF; Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil.; Department of Urology, Barretos Cancer Hospital, Barretos, Brazil., de Menezes NS; Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil., Ferrari RS; Department of Urology, Barretos Cancer Hospital, Barretos, Brazil., Banks RE; Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK., Vasudev NS; Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK., Zaridze D; Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia., Mukeriya A; Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia., Shangina O; Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia., Matveev V; Department of Urology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia., Foretova L; Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic., Navratilova M; Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic., Holcatova I; Institute of Public Health and Preventive Medicine, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.; Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic., Hornakova A; Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic., Janout V; Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic., Purdue MP; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA., Rothman N; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA., Chanock SJ; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA., Ueland PM; Bevital AS, Bergen, Norway., Johansson M; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., McKay J; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Scelo G; Observational and Pragmatic Research Institute Pte Ltd, Singapore, Singapore., Chanudet E; Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands., Humphreys L; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., de Carvalho AC; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Perdomo S; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France., Alexandrov LB; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA., Stratton MR; Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK., Brennan P; Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France. brennanp@iarc.who.int.
المصدر: Nature [Nature] 2024 May; Vol. 629 (8013), pp. 910-918. Date of Electronic Publication: 2024 May 01.
نوع المنشور: Comparative Study; Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Carcinoma, Renal Cell*/genetics , Carcinoma, Renal Cell*/epidemiology , Carcinoma, Renal Cell*/chemically induced , Environmental Exposure*/adverse effects , Environmental Exposure*/analysis , Geography* , Kidney Neoplasms*/genetics , Kidney Neoplasms*/epidemiology , Kidney Neoplasms*/chemically induced , Mutagens*/adverse effects , Mutation*, Female ; Humans ; Male ; Aristolochic Acids/adverse effects ; Genome, Human/genetics ; Genomics ; Hypertension/epidemiology ; Incidence ; Japan/epidemiology ; Obesity/epidemiology ; Risk Factors ; Romania/epidemiology ; Serbia/epidemiology ; Thailand/epidemiology ; Tobacco Smoking/adverse effects ; Tobacco Smoking/genetics
مستخلص: International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden 1 . In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence 2 . Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.
(© 2024. The Author(s).)
التعليقات: Comment in: Nat Rev Nephrol. 2024 Jul;20(7):429. doi: 10.1038/s41581-024-00855-9. (PMID: 38822189)
References: Brennan, P. & Davey-Smith, G. Identifying novel causes of cancers to enhance cancer prevention: new strategies are needed. J. Natl Cancer Inst. 114, 353–360 (2022). (PMID: 3474321110.1093/jnci/djab204)
Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Primers 3, 17009 (2017). (PMID: 28276433593604810.1038/nrdp.2017.9)
Koh, G., Degasperi, A., Zou, X., Momen, S. & Nik-Zainal, S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat. Rev. Cancer 21, 619–637 (2021). (PMID: 3431605710.1038/s41568-021-00377-7)
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). (PMID: 32025018705421310.1038/s41586-020-1943-3)
Scelo, G. et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 5, 5135 (2014). (PMID: 2535120510.1038/ncomms6135)
Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018). (PMID: 29656891592763110.1016/j.cell.2018.02.020)
Campbell, P. J. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). (PMID: 10.1038/s41586-020-1969-6)
Degasperi, A. et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nat. Cancer 1, 249–263 (2020). (PMID: 32118208704862210.1038/s43018-020-0027-5)
The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013). (PMID: 377132210.1038/nature12222)
Mutographs. Cancer Grand Challenges https://cancergrandchallenges.org/teams (2023).
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71, 209–249 (2021). (PMID: 33538338)
Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012). (PMID: 22608084341484110.1016/j.cell.2012.04.024)
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). (PMID: 23945592377639010.1038/nature12477)
Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358, 234–238 (2017). (PMID: 28912133603890810.1126/science.aao3130)
Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013). (PMID: 23926200397313210.1126/scitranslmed.3006200)
Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013). (PMID: 2392619910.1126/scitranslmed.3006086)
Grollman, A. P. Aristolochic acid nephropathy: harbinger of a global iatrogenic disease. Environ. Mol. Mutagen. 54, 1–7 (2013). (PMID: 2323880810.1002/em.21756)
Turesky, R. J. et al. Aristolochic acid exposure in Romania and implications for renal cell carcinoma. Br. J. Cancer 114, 76–80 (2016). (PMID: 2665765610.1038/bjc.2015.402)
Wang, X.-M. et al. Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus. Nat. Commun. 11, 739 (2020). (PMID: 32029730700529810.1038/s41467-020-14601-9)
Stefanovic, V. & Radovanovic, Z. Balkan endemic nephropathy and associated urothelial cancer. Nat. Clin. Pract. Urol. 5, 105–112 (2008). (PMID: 1825918810.1038/ncpuro1019)
Huang, M. N. et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 27, 1475–1486 (2017). (PMID: 28739859558070810.1101/gr.220038.116)
Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164, 538–549 (2016). (PMID: 26806129475304810.1016/j.cell.2015.12.050)
Otlu, B. et al. Topography of mutational signatures in human cancer. Cell Rep. 42, 112930 (2023). (PMID: 375405961050773810.1016/j.celrep.2023.112930)
Nik-Zainal, S. The genome as a record of environmental exposure. Mutagenesis 30, 763–770 (2015). (PMID: 264438524637815)
Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013). (PMID: 2379773610.1038/ng.2699)
Dempsey, D. et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther. 76, 64–72 (2004). (PMID: 1522946510.1016/j.clpt.2004.02.011)
Velenosi, T. J. et al. Untargeted metabolomics reveals N,N,N-trimethyl-L-alanyl-L-proline betaine (TMAP) as a novel biomarker of kidney function. Sci. Rep. 9, 6831 (2019). (PMID: 31048706649764310.1038/s41598-019-42992-3)
Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). (PMID: 22608083342886410.1016/j.cell.2012.04.023)
Dentro, S. C., Wedge, D. C. & van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 7, a026625 (2017). (PMID: 28270531553840510.1101/cshperspect.a026625)
Shearer, J. J. et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J. Natl Cancer Inst. 113, 580–587 (2021). (PMID: 3294474810.1093/jnci/djaa143)
Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019). (PMID: 30982602650633610.1016/j.cell.2019.03.001)
Gabriel, A. A. G. et al. Genetic analysis of lung cancer and the germline impact on somatic mutation burden. J. Natl Cancer Inst. 114, 1159–1166 (2022). (PMID: 35511172936046510.1093/jnci/djac087)
Liu, Y., Gusev, A., Heng, Y. J., Alexandrov, L. B. & Kraft, P. Somatic mutational profiles and germline polygenic risk scores in human cancer. Genome Med. 14, 14 (2022). (PMID: 35144655883286610.1186/s13073-022-01016-y)
Moody, S. et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat. Genet. 53, 1553–1563 (2021). (PMID: 3466392310.1038/s41588-021-00928-6)
Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021). (PMID: 3391128210.1038/s41586-021-03477-4)
Robinson, P. S. et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat. Genet. 53, 1434–1442 (2021). (PMID: 34594041849247410.1038/s41588-021-00930-y)
Robinson, P. S. et al. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat. Commun. 13, 3949 (2022). (PMID: 35803914927042710.1038/s41467-022-31341-0)
Fowler, J. C. & Jones, P. H. Somatic mutation: what shapes the mutational landscape of normal epithelia? Cancer Discov. 12, 1642–1655 (2022). (PMID: 35397477761302610.1158/2159-8290.CD-22-0145)
Whalley, J. P. et al. Framework for quality assessment of whole genome cancer sequences. Nat. Commun. 11, 5040 (2020). (PMID: 33028839754145510.1038/s41467-020-18688-y)
Bergmann, E. A., Chen, B.-J., Arora, K., Vacic, V. & Zody, M. C. Conpair: concordance and contamination estimator for matched tumor–normal pairs. Bioinformatics 32, 3196–3198 (2016). (PMID: 27354699504807010.1093/bioinformatics/btw389)
Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA 107, 16910–16915 (2010). (PMID: 20837533294790710.1073/pnas.1009843107)
Jones, D. et al. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinform. 56, 15.10.1–15.10.18 (2016). (PMID: 10.1002/cpbi.20)
Raine, K. M. et al. cgpPindel: identifying somatically acquired insertion and deletion events from paired end sequencing. Curr. Protoc. Bioinform. 52, 15.7.1–15.7.12 (2015). (PMID: 10.1002/0471250953.bi1507s52)
Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018). (PMID: 3001304810.1038/s41592-018-0051-x)
Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genom. 20, 685 (2019). (PMID: 10.1186/s12864-019-6041-2)
Liu, M., Wu, Y., Jiang, N., Boot, A. & Rozen, S. G. mSigHdp: hierarchical Dirichlet process mixture modeling for mutational signature discovery. NAR Genom. Bioinform. 5, lqad005 (2023). (PMID: 36694663986933010.1093/nargab/lqad005)
Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom. 2, 100179 (2022). (PMID: 36388765964649010.1016/j.xgen.2022.100179)
Senkin, S. MSA: reproducible mutational signature attribution with confidence based on simulations. BMC Bioinform. 22, 540 (2021). (PMID: 10.1186/s12859-021-04450-8)
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017). (PMID: 29056346572039510.1016/j.cell.2017.09.042)
Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 10, 25 (2018). (PMID: 29592813587500510.1186/s13073-018-0531-8)
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013). (PMID: 23550210416030710.1126/scisignal.2004088)
Díaz-Gay, M. et al. Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment. Bioinformatics 39, btad756 (2023). (PMID: 380965711074686010.1093/bioinformatics/btad756)
Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bull. 1, 80 (1945). (PMID: 10.2307/3001968)
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995). (PMID: 10.1111/j.2517-6161.1995.tb02031.x)
Dušek, L. et al. Epidemiology of Malignant Tumours in the Czech Republic, Version 7.0. Masaryk University http://www.svod.cz (2007).
Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019). (PMID: 30643251635854210.1038/s41588-018-0307-5)
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018). (PMID: 30124842648897310.1093/hmg/ddy271)
Lagou, V. et al. Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat. Commun. 12, 24 (2021). (PMID: 33402679778574710.1038/s41467-020-19366-9)
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). (PMID: 30305743678697510.1038/s41586-018-0579-z)
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009). (PMID: 19648217275213410.1101/gr.094052.109)
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015). (PMID: 25722852434219310.1186/s13742-015-0047-8)
Shim, H. et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 10, e0120758 (2015). (PMID: 25898129440526910.1371/journal.pone.0120758)
Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019). (PMID: 31307061662954210.1093/gigascience/giz082)
Loftfield, E. et al. Novel biomarkers of habitual alcohol intake and associations with risk of pancreatic and liver cancers and liver disease mortality. J. Natl Cancer Inst. 113, 1542–1550 (2021). (PMID: 34010397856296910.1093/jnci/djab078)
Gao, J., Meyer, K., Borucki, K. & Ueland, P. M. Multiplex Immuno-MALDI-TOF MS for targeted quantification of protein biomarkers and their proteoforms related to inflammation and renal dysfunction. Anal. Chem. 90, 3366–3373 (2018). (PMID: 2942088210.1021/acs.analchem.7b04975)
R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2022).
Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, https://doi.org/10.18637/jss.v067.i01 (2015).
Bengtsson H. matrixStats: Functions that apply to rows and columns of matrices (and to vectors). https://cran.r-project.org/web/packages/matrixStats/index.html (2023).
Bates, D. et al. Matrix: Sparse and dense matrix classes and methods. https://matrix.r-forge.r-project.org/ (2023).
Chamberlain, S., Teucher, A. & Mahoney, M. geojsonio. https://github.com/ropensci/geojsonio (2023).
Hijmans, R. J. raster. https://github.com/rspatial/raster (2024).
Bivand, R. & Rundel, C. rgeos. https://github.com/cran/rgeos/ (2023).
Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).
Tennekes, M. tmaptools: Thematic map tools. https://github.com/r-tmap/tmaptools (2021).
Lin Pedersen, T. patchwork: The composer of plots. https://github.com/thomasp85/patchwork (2024).
Cheng, J. Leaflet. https://github.com/rstudio/leaflet (2023).
Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org (2023).
Wickham, H., Miller, E. & Smith, D. haven: Import and export ‘SPSS’, ‘Stata’ and ‘SAS’ files. https://haven.tidyverse.org (2023).
Harrell Jr F. Hmisc: Harrell Miscellaneous. R package version 5.1-1. https://hbiostat.org/r/hmisc/ (2023).
Schauberger, P. & Walker, A. openxlsx: Read, write and edit xlsx files. https://github.com/ycphs/openxlsx (2022).
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ data abstraction library. https://rgdal.r-forge.r-project.org (2023).
Wickham, H., Pedersen, T. L. & Seidel, D. scales: Scale functions for visualization. https://scales.r-lib.org (2023).
Wickham, H. stringr: Simple, consistent wrappers for common string operations. https://stringr.tidyverse.org (2023).
Wickham, H., Vaughan, D. & Girlich, M. tidyr: Tidy messy data. https://tidyr.tidyverse.org (2024).
Müller, K. & Wickham, H. tibble: Simple data frames. https://tibble.tidyverse.org/ (2023).
Dragulescu, A. & Arendt, C. xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files. https://github.com/colearendt/xlsx (2022).
Archer, E. rfPermute. https://github.com/EricArcher/rfPermute (2023).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). (PMID: 10.1023/A:1010933404324)
Wickham, H. forcats: Tools for working with categorical variables (factors). https://forcats.tidyverse.org/ (2023).
The pandas development team. pandas-dev/pandas: Pandas. https://doi.org/10.5281/zenodo.7093122 (2022).
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). (PMID: 32939066775946110.1038/s41586-020-2649-2)
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). (PMID: 32015543705664410.1038/s41592-019-0686-2)
Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with Python. In 9th Python in Science Conference https://doi.org/10.25080/Majora-92bf1922-011 (2010).
Luo, J. firthlogist. https://github.com/jzluo/firthlogist (2022).
Smith, N. J. et al. pydata/patsy. https://doi.org/10.5281/zenodo.5529350 (2021).
Kluyver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Schmidt, B.) 87–90 (2016).
Wickham, H. ggplot2: Elegant graphics for data analysis. https://ggplot2.tidyverse.org (2016).
Campitelli, E. ggnewscale: Multiple fill and color scales in ggplot2. https://doi.org/10.5281/zenodo.7971612 (2023).
Mike, F. C., Davis, T. L. & ggplot2 authors. ggpattern: ‘ggplot2’ pattern geoms. https://github.com/trevorld/ggpattern (2022).
Slowikowski, K. ggrepel: Automatically position non-overlapping text labels with ‘ggplot2’. https://github.com/slowkow/ggrepel (2024).
Yutani, H. ggsflabel. https://yutannihilation.github.io/ggsflabel/ (2023).
Dunnington, D. ggspatial: Spatial data framework for ggplot2. https://paleolimbot.github.io/ggspatial/ (2023).
Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. https://rpkgs.datanovia.com/ggpubr/ (2023).
Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. https://wilkelab.org/cowplot/ (2024).
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). (PMID: 10.1109/MCSE.2007.55)
Waskom, M. L. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021). (PMID: 10.21105/joss.03021)
He, Y. TMB_plotter. https://github.com/AlexandrovLab/TMB_plotter (2020).
Global Administrative Areas. GADM v4.1. https://gadm.org (2022).
Patterson, T. & Nathaniel, V. World Countries, 1:10 million. Natural Earth v5.1.1. https://www.naturalearthdata.com (2022).
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; 001 International WHO_ World Health Organization
المشرفين على المادة: 0 (Aristolochic Acids)
0 (Mutagens)
تواريخ الأحداث: Date Created: 20240501 Date Completed: 20240522 Latest Revision: 20240808
رمز التحديث: 20240809
مُعرف محوري في PubMed: PMC11111402
DOI: 10.1038/s41586-024-07368-2
PMID: 38693263
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07368-2