دورية أكاديمية

A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy.

التفاصيل البيبلوغرافية
العنوان: A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy.
المؤلفون: Shaw WJ; Pacific Northwest National Laboratory, Richland, WA, USA. Wendy.shaw@pnnl.gov., Kidder MK; Oak Ridge National Laboratory, Oak Ridge, TN, USA. kidderm@ornl.gov., Bare SR; SLAC National Accelerator Laboratory, Menlo Park, CA, USA. srbare@slac.stanford.edu., Delferro M; Argonne National Laboratory, Lemont, IL, USA. delferro@anl.gov., Morris JR; Ames National Laboratory, Ames, IA, USA. morrisj@ameslab.gov., Toma FM; Lawrence Berkeley National Laboratory, Berkeley, CA, USA. fmtoma@lbl.gov.; Institute of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Teltow, Brandenburg, Germany. fmtoma@lbl.gov., Senanayake SD; Brookhaven National Laboratory, Upton, NY, USA. ssenanay@bnl.gov., Autrey T; Pacific Northwest National Laboratory, Richland, WA, USA., Biddinger EJ; Department of Chemical Engineering, The City College of New York, New York, NY, USA., Boettcher S; Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA., Bowden ME; Pacific Northwest National Laboratory, Richland, WA, USA., Britt PF; Oak Ridge National Laboratory, Oak Ridge, TN, USA., Brown RC; Department of Mechanical Engineering, Iowa State University, Ames, IA, USA., Bullock RM; Pacific Northwest National Laboratory, Richland, WA, USA., Chen JG; Brookhaven National Laboratory, Upton, NY, USA.; Department of Chemical Engineering, Columbia University, New York, NY, USA., Daniel C; Argonne National Laboratory, Lemont, IL, USA., Dorhout PK; Vice President for Research, Iowa State University, Ames, IA, USA., Efroymson RA; Oak Ridge National Laboratory, Oak Ridge, TN, USA., Gaffney KJ; SLAC National Accelerator Laboratory, Menlo Park, CA, USA., Gagliardi L; Department of Chemistry, The University of Chicago, Chicago, IL, USA., Harper AS; Pacific Northwest National Laboratory, Richland, WA, USA., Heldebrant DJ; Pacific Northwest National Laboratory, Richland, WA, USA.; Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA., Luca OR; Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA., Lyubovsky M; Booz Allen Hamilton, Washington DC, USA., Male JL; Pacific Northwest National Laboratory, Richland, WA, USA.; Biological Systems Engineering Department, Washington State University, Pullman, WA, USA., Miller DJ; Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Prozorov T; Ames National Laboratory, Ames, IA, USA., Rallo R; Pacific Northwest National Laboratory, Richland, WA, USA., Rana R; Department of Chemical Engineering, University of California, Davis, CA, USA., Rioux RM; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA., Sadow AD; Ames National Laboratory, Ames, IA, USA.; Department of Chemistry, Iowa State University, Ames, IA, USA., Schaidle JA; National Renewable Energy Laboratory, Golden, CO, USA., Schulte LA; Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA., Tarpeh WA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA., Vlachos DG; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA., Vogt BD; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA., Weber RS; Pacific Northwest National Laboratory, Richland, WA, USA., Yang JY; Department of Chemistry, University of California Irvine, Irvine, CA, USA., Arenholz E; Pacific Northwest National Laboratory, Richland, WA, USA., Helms BA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA., Huang W; Ames National Laboratory, Ames, IA, USA.; Department of Chemistry, Iowa State University, Ames, IA, USA., Jordahl JL; Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA., Karakaya C; Oak Ridge National Laboratory, Oak Ridge, TN, USA., Kian KC; Independent consultant, Washington DC, USA.; Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA., Kothandaraman J; Pacific Northwest National Laboratory, Richland, WA, USA., Lercher J; Pacific Northwest National Laboratory, Richland, WA, USA.; Department of Chemistry, Technical University of Munich, Munich, Germany., Liu P; Brookhaven National Laboratory, Upton, NY, USA., Malhotra D; Pacific Northwest National Laboratory, Richland, WA, USA., Mueller KT; Pacific Northwest National Laboratory, Richland, WA, USA., O'Brien CP; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA., Palomino RM; BASF Corporation, Iselin, NJ, USA., Qi L; Ames National Laboratory, Ames, IA, USA., Rodriguez JA; Brookhaven National Laboratory, Upton, NY, USA., Rousseau R; Oak Ridge National Laboratory, Oak Ridge, TN, USA., Russell JC; Advanced Research Projects Agency - Energy, Department of Energy, Washington DC, USA., Sarazen ML; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA., Sholl DS; Oak Ridge National Laboratory, Oak Ridge, TN, USA., Smith EA; Ames National Laboratory, Ames, IA, USA.; Department of Chemistry, Iowa State University, Ames, IA, USA., Stevens MB; SLAC National Accelerator Laboratory, Menlo Park, CA, USA., Surendranath Y; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA., Tassone CJ; SLAC National Accelerator Laboratory, Menlo Park, CA, USA., Tran B; Pacific Northwest National Laboratory, Richland, WA, USA., Tumas W; National Renewable Energy Laboratory, Golden, CO, USA., Walton KS; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
المصدر: Nature reviews. Chemistry [Nat Rev Chem] 2024 May; Vol. 8 (5), pp. 376-400. Date of Electronic Publication: 2024 May 01.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: England NLM ID: 101703631 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2397-3358 (Electronic) Linking ISSN: 23973358 NLM ISO Abbreviation: Nat Rev Chem Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: [London] : Springer Nature, [2017]-
مستخلص: Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.
(© 2024. Argonne National Laboratory, Battelle Memorial Institute, UT- Battelle, LLC, Brookhaven National Laboratory, National Renewable Energy Laboratory, AMES National Laboratory, Lawrence Berkley National Laboratory, SLAC National Accelerator Laboratory, Booz Allen Hamilton, BASF Corporation and The Author(s), under exclusive licence to Springer Nature Limited. This work contains contributions, authored by US Government employees in the course of their official duties, which are not subject to copyright protection in the US. Foreign copyright protection for these contributions may still apply.)
References: Allen, M. et al. in Global Warming Of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 3–24 (Cambridge Univ. Press, 2018).
Nasta, A. & Westerdale R. W. Jr CO2-secure: a national program to deploy carbon removal at gigaton scale. EFI Foundation https://energyfuturesinitiative.org/reports/co2-secure-a-national-program-to-deploy-carbon-removal-at-gigaton-scale/ (2022).
Pörtner, H.-O. et al. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022).
Lee, H. et al. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Lee, H. & Romero, J.) 1–34 (IPCC, 2023).
Pörtner, H.-O. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 3–33 (Cambridge Univ. Press, 2022). 2022 summary by IPCC identifies future impacts of climate change and climate resilience on the world.
Wang, Y. et al. Quantification of human contribution to soil moisture-based terrestrial aridity. Nat. Commun. 13, 6848 (2022). (PMID: 36369164965235610.1038/s41467-022-34071-5)
Ryoo, J.-M. & Park, T. Contrasting characteristics of atmospheric rivers and their impacts on 2016 and 2020 wildfire seasons over the western United States. Environ. Res. Lett. 18, 074010 (2023). (PMID: 10.1088/1748-9326/acd948)
Ericksen, P. J., Ingram, J. S. I. & Liverman, D. M. Food security and global environmental change: emerging challenges. Environ. Sci. Policy 12, 373–377 (2009). (PMID: 10.1016/j.envsci.2009.04.007)
Gai, D. H. B., Shittu, E., Yang, Y. C. E. & Li, H.-Y. A comprehensive review of the nexus of food, energy, and water systems: what the models tell us. J. Water Resour. Plan. Manag. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001564 (2022).
Stott, P. Climate change. How climate change affects extreme weather events. Science 352, 1517–1518 (2016). (PMID: 2733996810.1126/science.aaf7271)
Bataille, C. G. F. Physical and policy pathways to net‐zero emissions industry. Wiley Interdiscip. Rev. Clim. Change 11, e633 (2020). (PMID: 10.1002/wcc.633)
Bazzanella, A. M. & Ausfelder, F. Low Carbon Energy and Feedstock for the European Chemical Industry (DECHEMA, 2017).
Madeddu, S. et al. The CO 2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat). Environ. Res. Lett. 15, 124004 (2020). (PMID: 10.1088/1748-9326/abbd02)
Elimelech, M. The global challenge for adequate and safe water. AQUA 55, 3–10 (2006).
Hering, J. G., Waite, T. D., Luthy, R. G., Drewes, J. E. & Sedlak, D. L. A changing framework for urban water systems. Environ. Sci. Technol. 47, 10721–10726 (2013). (PMID: 2365097510.1021/es4007096)
Tortajada, C. & Biswas, A. K. Achieving universal access to clean water and sanitation in an era of water scarcity: strengthening contributions from academia. Curr. Opin. Environ. Sustain. 34, 21–25 (2018). (PMID: 10.1016/j.cosust.2018.08.001)
Hillie, T. & Hlophe, M. Nanotechnology and the challenge of clean water. Nat. Nanotechnol. 2, 663–664 (2007). (PMID: 1865439510.1038/nnano.2007.350)
Rabesandratana, T. Research on ocean plastic surging, U.N. report finds. Science (10 June 2021).
Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. What a waste 2.0: a global snapshot of solid waste Management to 2050. World Bank https://openknowledge.worldbank.org/handle/10986/30317 (2018).
Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018). (PMID: 29568057586493510.1038/s41598-018-22939-w)
Diggle, A. & Walker, T. R. Environmental and economic impacts of mismanaged plastics and measures for mitigation. Environments 9, 15 (2022). (PMID: 10.3390/environments9020015)
What is a Circular Economy? (Environmental Protection Agency, 2023); https://www.epa.gov/recyclingstrategy/what-circular-economy .
National Academies of Sciences, Engineering, and Medicine et al. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies Press, 2018).
The long-term strategy of the United States: pathways to net-zero greenhouse gas emissions by 2050. US Department of State and the US Executive Office of the President https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf (2021).
Bashmakov, I. A. et al. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 11 (Cambridge Univ. Press, 2022).
Why is it so hard to decarbonize aviation? Climate Trade https://climatetrade.com/why-is-it-so-hard-to-decarbonize-aviation/ (2022).
Male, J. L., Kintner-Meyer, M. C. W. & Weber, R. S. The U.S. energy system and the production of sustainable aviation fuel from clean electricity Front. Energy Res. https://doi.org/10.3389/fenrg.2021.765360 (2021).
Decarbonising aviation. Shell Global https://www.shell.com/energy-and-innovation/the-energy-future/decarbonising-aviation.html#vanity-aHR0cHM6Ly93d3cuc2hlbGwuY29tL0RlY2FyYm9uaXNpbmdBdmlhdGlvbi5odG1s .
Biswas, S., Moreno Sader, K. & Green, W. H. Perspective on decarbonizing long-haul trucks using onboard dehydrogenation of liquid organic hydrogen carriers. Energy Fuels 37, 17003–17012 (2023). (PMID: 10.1021/acs.energyfuels.3c01919)
The Global Centre for Maritime Decarbonisation (GCMD) https://www.gcformd.org/ .
Table 18. Energy-related carbon dioxide emissions by sector and source Case: reference case | region: United States. US Energy Information Administration https://www.eia.gov/outlooks/aeo/data/browser/#/?id=17-AEO2022&cases=ref2022&sourcekey=0 (2022).
Table 19. Energy-related carbon dioxide emissions by end use Case: reference case. US Energy Information Administration https://www.eia.gov/outlooks/aeo/data/browser/#/?id=22-AEO2022&cases=ref2022&sourcekey=0 (2022).
2020 Guide to the business of chemistry. American Chemistry Council https://www.americanchemistry.com/chemistry-in-america/data-industry-statistics/resources/2020-guide-to-the-business-of-chemistry (2020).
Clean Fuels & Products Shot™: alternative sources for carbon-based products. Office of Energy Efficiency & Renewable Energy https://www.energy.gov/eere/clean-fuels-products-shottm-alternative-sources-carbon-based-products (2023).
Matthews, J. B. R. in Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 541–562. (Cambridge Univ. Press, 2018).
Biden–Harris administration announces $750 million to advance clean hydrogen technologies. US Department of Energy (15 March 2023); https://www.energy.gov/articles/biden-harris-administration-announces-750-million-advance-clean-hydrogen-technologies .
Peplow, M. The race to upcycle CO 2 into fuels, concrete and more. Nature 603, 780–783 (2022). Urgency, viability and related needs for upcycling of CO 2 into fuels, chemicals and concretes. (PMID: 3535205410.1038/d41586-022-00807-y)
Hepburn, C. et al. The technological and economic prospects for CO 2 utilization and removal. Nature 575, 87–97 (2019). (PMID: 3169521310.1038/s41586-019-1681-6)
Langholtz, M. H., Stokes, B. J. & Eaton, L. M. 2016 Billion-ton Report: Advancing Domestic Resources for a Thriving Bioeconomy Vol. 1: Economic availability of feedstocks (US Department of Energy, 2016).
Brown, R. C. & Brown, T. R. Biorenewable Resources: Engineering New Products from Agriculture 2nd edn (Wiley-Blackwell, 2014).
Dong, W. et al. A framework to quantify mass flow and assess food loss and waste in the US food supply chain. Commun. Earth Environ. 3, 83 (2022). (PMID: 10.1038/s43247-022-00414-9)
Korley, L. T. J., Epps, T. H. III, Helms, B. A. & Ryan, A. J. Toward polymer upcycling-adding value and tackling circularity. Science 373, 66–69 (2021). How to transform untapped plastic waste into fine chemicals and recyclable materials through design of new sustainable polymers. (PMID: 3421087910.1126/science.abg4503)
Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017). (PMID: 10.1038/s41570-017-0046)
Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021). (PMID: 3459162310.1126/science.abg9853)
Palm, E., Nilsson, L. J. & Åhman, M. Electricity-based plastics and their potential demand for electricity and carbon dioxide. J. Clean. Prod. 129, 548–555 (2016). (PMID: 10.1016/j.jclepro.2016.03.158)
Kougias, P. G. & Angelidaki, I. 2018 Biogas and its opportunities — a review. Front. Environ. Sci. Eng. 12, 14 (2018).
Lacy, P. & Rutqvist, J. Waste to Wealth The Circular Economy Advantage (Palgrave Macmillan, 2015).
Keijer, T., Bakker, V. & Slootweg, J. C. Circular chemistry to enable a circular economy. Nat. Chem. 11, 190–195 (2019). Twelve principles of green chemistry and circular chemistry enabling waste-free chemical industries. (PMID: 3079251210.1038/s41557-019-0226-9)
Badgett, A., Newes, E. & Milbrandt, A. Economic analysis of wet waste-to-energy resources in the United States. Energy 176, 224–234 (2019). (PMID: 10.1016/j.energy.2019.03.188)
Coma, M. et al. Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss. 202, 175–195 (2017). (PMID: 28654113570835810.1039/C7FD00070G)
Liu, Y. et al. Review of waste biorefinery development towards a circular economy: from the perspective of a life cycle assessment. Renew. Sustain. Energy Rev. 139, 110716 (2021). (PMID: 10.1016/j.rser.2021.110716)
Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J. & Bhowmik, R. A review on municipal solid waste-to-energy trends in the USA. Renew. Sustain. Energy Rev. 119, 109512 (2020). (PMID: 10.1016/j.rser.2019.109512)
Saygin, D. & Gielen, D. Zero-emission pathway for the global chemical and petrochemical sector. Energies 14, 3772 (2021). (PMID: 10.3390/en14133772)
Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018). (PMID: 2995495410.1126/science.aas9793)
Feng, K., Davis, S. J., Sun, L. & Hubacek, K. Drivers of the US CO 2 emissions 1997–2013. Nat. Commun. 6, 7714 (2015). (PMID: 2619710410.1038/ncomms8714)
MacDonald, A. E. et al. Future cost-competitive electricity systems and their impact on US CO 2 emissions. Nat. Clim. Change 6, 526–531 (2016). (PMID: 10.1038/nclimate2921)
Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018). (PMID: 10.1038/s41929-018-0182-6)
Bistline, J. E. T. Roadmaps to net-zero emissions systems: emerging insights and modeling challenges. Joule 5, 2551–2563 (2021). (PMID: 10.1016/j.joule.2021.09.012)
Wu, W. & Skye, H. M. Residential net-zero energy buildings: review and perspective. Renew. Sustain. Energy Rev. 142, 110859 (2021). (PMID: 10.1016/j.rser.2021.110859)
Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018). (PMID: 2922017010.1021/acs.chemrev.7b00435)
Homrich, A. S., Galvão, G., Abadia, L. G. & Carvalho, M. M. The circular economy umbrella: trends and gaps on integrating pathways. J. Clean. Prod. 175, 525–543 (2018). (PMID: 10.1016/j.jclepro.2017.11.064)
Bonsu, N. O. Towards a circular and low-carbon economy: insights from the transitioning to electric vehicles and net zero economy. J. Clean. Prod. 256, 120659 (2020). (PMID: 10.1016/j.jclepro.2020.120659)
Basic Energy Sciences Roundtable on Foundational Science for Carbon-Neutral Hydrogen Technologies (Department of Energy, 2021).
Basic Energy Sciences Roundtable Foundational Science for Carbon Dioxide Removal Technologies (Department of Energy, 2022).
Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers (Department of Energy, 2019).
Is it possible to achieve net-zero emissions? National Academies https://www.nationalacademies.org/based-on-science/is-it-possible-to-achieve-net-zero-emissions (2021).
The importance of chemical research to the U.S. economy — new report. National Academies https://www.nationalacademies.org/news/2022/07/the-importance-of-chemical-research-to-the-u-s-economy-new-report (2022).
d’Aprile, P. et al. How the European Union could achieve net-zero emission at net-zero cost. McKinsey Sustainability https://www.mckinsey.com/capabilities/sustainability/our-insights/how-the-european-union-could-achieve-net-zero-emissions-at-net-zero-cost (2020).
Technology roadmap: energy and GHG reductions in the chemical industry via catalytic processes. International Energy Agency https://iea.blob.core.windows.net/assets/d0f7ff3a-0612-422d-ad7d-a682091cb500/TechnologyRoadmapEnergyandGHGReductionsintheChemicalIndustryviaCatalyticProcesses.pdf (2013). Examines the energy demand and global GHG emissions of the chemical and petrochemical sectors, and proposes the need of energy savings approaching 13 exajoules by 2050.
Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016). Identifies the key industrial separations processes and identifies the ones that necessitate scientific advances. (PMID: 2712182410.1038/532435a)
Samir, A., Ashour, F. H., Hakim, A. A. A. & Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 6, 68 (2022). (PMID: 10.1038/s41529-022-00277-7)
Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022). (PMID: 35075395877117310.1038/s41578-021-00407-8)
Doliente, S. S. et al. Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Front. Energy Res. https://doi.org/10.3389/fenrg.2020.00110 (2020).
Alivisatos, P. & Buchanan, M. Basic research needs for carbon capture: beyond 2020. US Department of Energy Office of Scientific and Technical Information https://www.osti.gov/biblio/1291240 (2010).
Kalam, S. et al. Carbon dioxide sequestration in underground formations: review of experimental, modeling, and field studies. J. Pet. Explor. Prod. Technol. 11, 303–325 (2021). (PMID: 10.1007/s13202-020-01028-7)
Zheng, J., Chong, Z. R., Qureshi, M. F. & Linga, P. Carbon dioxide sequestration via gas hydrates: a potential pathway toward decarbonization. Energy Fuels 34, 10529–10546 (2020). (PMID: 10.1021/acs.energyfuels.0c02309)
Ehlig-Economides, C. A. Geologic carbon dioxide sequestration methods, opportunities, and impacts. Curr. Opin. Chem. Eng. 42, 100957 (2023). (PMID: 10.1016/j.coche.2023.100957)
King, S. Recycling our way to sustainability. Nature 611, S7 (2022). (PMID: 3638555110.1038/d41586-022-03646-z)
Hottle, T. A., Bilec, M. M. & Landis, A. E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 98, 1898–1907 (2013). (PMID: 10.1016/j.polymdegradstab.2013.06.016)
Hong, M. & Chen, E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017). (PMID: 10.1039/C7GC01496A)
Klotz, M., Haupt, M. & Hellweg, S. Limited utilization options for secondary plastics may restrict their circularity. Waste Manag. 141, 251–270 (2022). (PMID: 3515831110.1016/j.wasman.2022.01.002)
Hood, B. Make recycled goods covetable. Nature 531, 438–440 (2016). (PMID: 2700895310.1038/531438a)
To get serious on the circular economy, upend how global business works. Nature 612, 190 (2022).
Carbon negative shot. Office of Fossil Energy and Carbon Management https://www.energy.gov/fecm/carbon-negative-shot (2023).
Lahtela, V. & Kärki, T. Mechanical sorting processing of waste material before composite manufacturing – a review. J. Eng. Sci. Technol. Rev. 11, 35–46 (2018). (PMID: 10.25103/jestr.116.06)
Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, e2000415 (2021). (PMID: 3300088310.1002/marc.202000415)
Zhang, X., Liu, C., Chen, Y., Zheng, G. & Chen, Y. Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review. Environ. Dev. Sustain. 24, 11471–11513 (2022). (PMID: 3477676510.1007/s10668-021-01932-w)
Handley, M. C., Slesinski, D. & Hsu, S. C. Potential early markets for fusion energy. J. Fusion Energy 40, 18 (2021). (PMID: 10.1007/s10894-021-00306-4)
Zou, C. et al. The role of new energy in carbon neutral. Pet. Explor. Dev. 48, 480–491 (2021). (PMID: 10.1016/S1876-3804(21)60039-3)
Hu, G., Li, Y., Ye, C., Liu, L. & Chen, X. Engineering microorganisms for enhanced CO 2 sequestration. Trends Biotechnol. 37, 532–547 (2019). (PMID: 3044787810.1016/j.tibtech.2018.10.008)
Ng, I. S., Keskin, B. B. & Tan, S. I. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria. Biotechnol. J. 15, e1900228 (2020). (PMID: 3208096310.1002/biot.201900228)
Li, X. et al. Mining natural products for advanced biofuels and sustainable bioproducts. Curr. Opin. Biotechnol. 84, 103003 (2023). (PMID: 3776951310.1016/j.copbio.2023.103003)
Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016). (PMID: 2702625310.1038/nrmicro.2016.32)
Evans, A., Strezov, V. & Evans, T. J. Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 16, 4141–4147 (2012). (PMID: 10.1016/j.rser.2012.03.048)
Stram, B. N. Key challenges to expanding renewable energy. Energy Policy 96, 728–734 (2016). (PMID: 10.1016/j.enpol.2016.05.034)
Joshi, J. Do renewable portfolio standards increase renewable energy capacity? evidence from the United States. J. Environ. Manag. 287, 112261 (2021). (PMID: 10.1016/j.jenvman.2021.112261)
Impram, S., Varbak Nese, S. & Oral, B. Challenges Of renewable energy penetration on power system flexibility: a survey. Energy Strategy Rev. 31, 100539 (2020). (PMID: 10.1016/j.esr.2020.100539)
Williams, J. H. et al. Carbon‐neutral pathways for the United States. AGU Adv. 2, e2020AV000284 (2021). (PMID: 10.1029/2020AV000284)
Murphy, S. Modernizing the U.S. electric grid: a proposal to update transmission infrastructure for the future of electricity. Environ. Prog. Sustain. Energy 41, e13798 (2022). (PMID: 10.1002/ep.13798)
Blonsky, M. et al. Potential impacts of transportation and building electrification on the grid: a review of electrification projections and their effects on grid infrastructure, operation, and planning. Curr. Sustain. Renew. Energy Rep. 6, 169–176 (2019).
Murphy, C. et al. Electrification Futures Study: Scenarios of Power System Evolution and Infrastructure Development for the United States (National Renewable Energy Laboratory, 2021).
Fant, C. et al. Climate change impacts and costs to U.S. electricity transmission and distribution infrastructure. Energy 195, 116899 (2020).
Snyder, C. S., Bruulsema, T. W., Jensen, T. L. & Fixen, P. E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 133, 247–266 (2009). (PMID: 10.1016/j.agee.2009.04.021)
Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2016). (PMID: 10.1038/nclimate3158)
Stanley, P. L., Rowntree, J. E., Beede, D. K., DeLonge, M. S. & Hamm, M. W. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 162, 249–258 (2018). (PMID: 10.1016/j.agsy.2018.02.003)
Heller, M. C. & Keoleian, G. A. Greenhouse gas emission estimates of U.S. dietary choices and food loss. J. Ind. Ecol. 19, 391–401 (2015). (PMID: 10.1111/jiec.12174)
Bennetzen, E. H., Smith, P. & Porter, J. R. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Change Biol. 22, 763–781 (2016). (PMID: 10.1111/gcb.13120)
The United States of American nationally determined contribution: reducing greenhouse gases in the United States: a 2030 emissions target. United Nations Framework Convention on Climate Change https://unfccc.int/sites/default/files/NDC/2022-06/United%20States%20NDC%20April%2021%202021%20Final.pdf (2021).
Executive Order 14008, tackling the climate crisis at home and abroad. Federal Register https://www.federalregister.gov/documents/2021/02/01/2021-02177/tackling-the-climate-crisis-at-home-and-abroad (2021).
Cheliotis, M. et al. Review on the safe use of ammonia fuel cells in the maritime industry. Energies 14, 3023 (2021). (PMID: 10.3390/en14113023)
Machaj, K. et al. Ammonia as a potential marine fuel: a review. Energy Strategy Rev. 44, 100926 (2022). (PMID: 10.1016/j.esr.2022.100926)
Valera-Medina, A. et al. Review on ammonia as a potential fuel: from synthesis to economics. Energy Fuels 35, 6964–7029 (2021). (PMID: 10.1021/acs.energyfuels.0c03685)
Wang, Y. et al. A review of low and zero carbon fuel technologies: achieving ship carbon reduction targets. Sustain. Energy Technol. Assess. 54, 102762 (2022).
Elrhoul, D., Romero Gómez, M. & Naveiro, M. Review of green hydrogen technologies application in maritime transport. Int. J. Green. Energy 20, 1800–1825 (2023). (PMID: 10.1080/15435075.2023.2194384)
Bilgili, L. A systematic review on the acceptance of alternative marine fuels. Renew. Sustain. Energy Rev. 182, 113367 (2023).
Elishav, O. et al. Progress and prospective of nitrogen-based alternative fuels. Chem. Rev. 120, 5352–5436 (2020). (PMID: 3250168110.1021/acs.chemrev.9b00538)
Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018). (PMID: 29798857608879610.1126/science.aar6611)
Zhao, Y. et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3, 2472–2484 (2019). (PMID: 10.1016/j.joule.2019.07.005)
Jang, J. H., Park, S. Y., Youn, D. H. & Jang, Y. J. Recent advances in electrocatalysts for ammonia oxidation reaction. Catalysts 13, 803 (2023). (PMID: 10.3390/catal13050803)
Lamb, K. E., Dolan, M. D. & Kennedy, D. F. Ammonia for hydrogen storage; a review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrog. Energy 44, 3580–3593 (2019). (PMID: 10.1016/j.ijhydene.2018.12.024)
Carbon-free fuel is impossible: the fuel revolution is here. Sunborne Systems https://sunbornesystems.com/ (2021).
The Amogy technology: a big solution for a big challenge. AMOGY https://amogy.co/technology/ (2020).
Shen, H. et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design. Chem 7, 1708–1754 (2021). (PMID: 10.1016/j.chempr.2021.01.009)
Cui, Y. et al. The development of catalysts for electrochemical nitrogen reduction toward ammonia: theoretical and experimental advances. Chem. Commun. 58, 10290–10302 (2022). (PMID: 10.1039/D2CC03410G)
Yang, B., Ding, W., Zhang, H. & Zhang, S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 14, 672–687 (2021). (PMID: 10.1039/D0EE02263B)
Chalkley, M. J., Drover, M. W. & Peters, J. C. Catalytic N 2 -to-NH 3 (or -N 2 H 4 ) conversion by well-defined molecular coordination complexes. Chem. Rev. 120, 5582–5636 (2020). (PMID: 32352271749399910.1021/acs.chemrev.9b00638)
Garrido-Barros, P., Derosa, J., Chalkley, M. J. & Peters, J. C. Tandem electrocatalytic N 2 fixation via proton-coupled electron transfer. Nature 609, 71–76 (2022). (PMID: 360452401028119910.1038/s41586-022-05011-6)
Singh, A. R. et al. Electrochemical ammonia synthesis — the selectivity challenge. ACS Catal. 7, 706–709 (2017).
Overview of Greenhouse Gases. US Environmental Protection Agency https://www.epa.gov/ghgemissions/overview-greenhouse-gases#:~:Text=The%20impact%20of%201%20pound,1%20pound%20of%20carbon%20dioxide.&Text=Globally%2C%20about%2040%25%20of%20total,emissions%20come%20from%20human%20activities (2022).
Wolfram, P., Kyle, P., Zhang, X., Gkantonas, S. & Smith, S. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat. Energy 7, 1112–1114 (2022). (PMID: 10.1038/s41560-022-01124-4)
Liu, J., Balmford, A. & Bawa, K. S. Fuel, food and fertilizer shortage will hit biodiversity and climate. Nature 604, 425 (2022). (PMID: 3544081810.1038/d41586-022-01061-y)
Comer, B. M. et al. Prospects and challenges for solar fertilizers. Joule 3, 1578–1605 (2019). (PMID: 10.1016/j.joule.2019.05.001)
Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020). (PMID: 10.1039/C9EE02873K)
The Maritime Executive. Ammonia leak on tanker kills one and injures three off Malaysia. The Maritime Executive (April 7 2021).
Pivovar, B., Rustagi, N. & Satyapal, S. Hydrogen at scale (H 2 @Scale): key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27, 47–52 (2018). (PMID: 10.1149/2.F04181if)
Hydrogen shot. Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/hydrogen-shot (2021).
DOE national clean hydrogen strategy and roadmap. US Department of Energy https://www.hydrogen.energy.gov/pdfs/clean-hydrogen-strategy-roadmap.pdf (2022).
Department of Energy hydrogen program plan. US Department of Energy https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf (2020).
Koleva, M. & Rustagi, N. Hydrogen delivery and dispensing cost. US Department of Energy https://www.hydrogen.energy.gov/pdfs/20007-hydrogen-delivery-dispensing-cost.pdf (2020).
Multi-year research, development, and demonstration plan 3.2 hydrogen delivery. Department of Energy https://www.energy.gov/sites/prod/files/2015/08/f25/fcto_myrdd_delivery.pdf (2015).
Hydrogen pipelines. Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/hydrogen-pipelines .
M. W. Melaina, M. W., Antonia, O. & Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks: a Review of Key Issues. (National Renewable Energy Laboratory, 2013).
Twitchell, J., DeSomber, K. & Bhatnagar, D. Defining long duration energy storage. J. Energy Storage 60, 105787 (2023). (PMID: 10.1016/j.est.2022.105787)
Horowitz, A. How we’re moving to net-zero by 2050. Department of Energy https://www.energy.gov/articles/how-were-moving-net-zero-2050 (2021).
Nalley, S. Release at the Bipartisan Policy Center. Energy Information Administration https://www.eia.gov/pressroom/releases/press495.php (2022).
Tullo, A. H. Organics challenge ammonia as hydrogen carriers. ACS Cent. Sci. 8, 1471–1473 (2022).
The world’s first global hydrogen supply chain demonstration project. Chiyoda Corporation https://www.chiyodacorp.com/en/service/spera-hydrogen/ (2016).
Wasserscheid, P. et al. Experimental determination of the hydrogenation/dehydrogenation — equilibrium of the LOHC system H0/H18-dibenzyltoluene. Int. J. Hydrog. Energy 46, 32583–32594 (2021). (PMID: 10.1016/j.ijhydene.2021.07.119)
Allendorf, M. D. et al. Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 14, 1214–1223 (2022). Outlines the needs and key challenges for stationary and mobile H 2 storage applications, including materials and research and development approaches. (PMID: 3630287110.1038/s41557-022-01056-2)
The Long Duration Storage Shot (Office of Energy Efficiency & Renewable Energy, 2021); https://www.energy.gov/eere/long-duration-storage-shot .
Mevawala, C. et al. The ethanol–ethyl acetate system as a biogenic hydrogen carrier. Energy Technol. 11, 2200892 (2023). (PMID: 10.1002/ente.202200892)
Crandall, B. S., Brix, T., Weber, R. S. & Jiao, F. Techno-economic assessment of green H 2 carrier supply chains. Energy Fuels 37, 1441–1450 (2022). (PMID: 10.1021/acs.energyfuels.2c03616)
Papadias, D. D., Peng, J.-K. & Ahluwalia, R. K. Hydrogen carriers: production, transmission, decomposition, and storage. Int. J. Hydrog. Energy 46, 24169–24189 (2021). (PMID: 10.1016/j.ijhydene.2021.05.002)
Stetson, N. & Wieliczko, M. Hydrogen technologies for energy storage: a perspective. MRS Energy Sustain. 7, 41 (2020). Overview of the US Department of Energy’s Hydrogen and Fuel Cell Technologies Office’s activities in hydrogen storage, outlining the needs of a modernized grid and other research and development directions.
Aakko-Saksa, P. T., Cook, C., Kiviaho, J. & Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy – review and discussion. J. Power Sources 396, 803–823 (2018). (PMID: 10.1016/j.jpowsour.2018.04.011)
Niermann, M., Beckendorff, A., Kaltschmitt, M. & Bonhoff, K. Liquid Organic Hydrogen Carrier (LOHC) – assessment based on chemical and economic properties. Int. J. Hydrog. Energy 44, 6631–6654 (2019). (PMID: 10.1016/j.ijhydene.2019.01.199)
Obara, S. Y. Energy efficiency of a hydrogen supply system using the reaction cycle of methylcyclohexane-toluene-hydrogen. Mech. Eng. J. 5, 17-00062 (2018). (PMID: 10.1299/mej.17-00062)
Preuster, P., Papp, C. & Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017). Describes liquid organic hydrogen carrier applications needed for storage and transportation applications of catalysis for both hydrogenation and dehydrogenation. (PMID: 2800491610.1021/acs.accounts.6b00474)
Aromatics technology. Chevron Phillips Chemical https://www.cpchem.com/what-we-do/licensing/aromatics-technology (2000).
Hu, P., Ben-David, Y. & Milstein, D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew. Chem. Int. Ed. 55, 1061–1064 (2016). (PMID: 10.1002/anie.201505704)
Tran, B. L., Johnson, S. I., Brooks, K. P. & Autrey, S. T. Ethanol as a liquid organic hydrogen carrier for seasonal microgrid application: catalysis, theory, and engineering feasibility. ACS Sustain. Chem. Eng. 9, 7130–7138 (2021). (PMID: 10.1021/acssuschemeng.1c01513)
Zou, Y. Q., von Wolff, N., Anaby, A., Xie, Y. & Milstein, D. Ethylene glycol as an efficient and reversible liquid organic hydrogen carrier. Nat. Catal. 2, 415–422 (2019). (PMID: 31406959669083910.1038/s41929-019-0265-z)
Verevkin, S. P., Konnova, M. E., Zherikova, K. V. & Pimerzin, A. A. Sustainable hydrogen storage: thermochemistry of amino-alcohols as seminal liquid organic hydrogen carriers. J. Chem. Thermodyn. 163, 106591 (2021). (PMID: 10.1016/j.jct.2021.106591)
Onoda, M., Nagano, Y. & Fujita, K.-I. Iridium-catalyzed dehydrogenative lactonization of 1,4-butanediol and reversal hydrogenation: new hydrogen storage system using cheap organic resources. Int. J. Hydrog. Energy 44, 28514–28520 (2019). (PMID: 10.1016/j.ijhydene.2019.03.219)
Hu, P., Fogler, E., Diskin-Posner, Y., Iron, M. A. & Milstein, D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat. Commun. 6, 6859 (2015). (PMID: 2588234810.1038/ncomms7859)
Gautier, V., Campon, I., Chappaz, A. & Pitault, I. Kinetic modeling for the gas-phase hydrogenation of the LOHC γ-butyrolactone–1,4-butanediol on a copper-zinc catalyst. Reactions 3, 499–515 (2022). (PMID: 10.3390/reactions3040033)
Grubel, K. et al. Research requirements to move the bar forward using aqueous formate salts as H2 carriers for energy storage applications. J. Energy Power Technol. https://doi.org/10.21926/jept.2004016 (2020).
Hwang, Y. J. et al. Development of an autothermal formate-based hydrogen generator: from optimization of formate dehydrogenation conditions to thermal integration with fuel cells. ACS Sustain. Chem. Eng. 8, 9846–9856 (2020). (PMID: 10.1021/acssuschemeng.0c02775)
Müller, K., Brooks, K. & Autrey, T. Releasing hydrogen at high pressures from liquid carriers: aspects for the H 2 delivery to fueling stations. Energy Fuels 32, 10008–10015 (2018). (PMID: 10.1021/acs.energyfuels.8b01724)
Müller, K., Brooks, K. & Autrey, T. Hydrogen storage in formic acid: a comparison of process options. Energy Fuels 31, 12603–12611 (2017). (PMID: 10.1021/acs.energyfuels.7b02997)
Gutiérrez, O. Y. et al. Using earth abundant materials for long duration energy storage: electro-chemical and thermo-chemical cycling of bicarbonate/formate. Green Chem. 25, 4222–4233 (2023). (PMID: 10.1039/D3GC00219E)
Schaub, T. & Paciello, R. A. A process for the synthesis of formic acid by CO 2 hydrogenation: thermodynamic aspects and the role of CO. Angew. Chem. Int. Ed. 50, 7278–7282 (2011). (PMID: 10.1002/anie.201101292)
Ruggles, T. H., Dowling, J. A., Lewis, N. S. & Caldeira, K. Opportunities for flexible electricity loads such as hydrogen production from curtailed generation. Adv. Appl. Energy 3, 100051 (2021). (PMID: 10.1016/j.adapen.2021.100051)
Castelvecchi, D. How the hydrogen revolution can help save the planet — and how it can’t. Nature 611, 440–443 (2022). (PMID: 3638554210.1038/d41586-022-03699-0)
Dowling, J. A. et al. Role of long-duration energy storage in variable renewable electricity systems. Joule 4, 1907–1928 (2020). (PMID: 10.1016/j.joule.2020.07.007)
Spitsen, P. & Sprenkle, V. Energy storage cost and performance database. Pacific Northwest National Laboratory https://www.pnnl.gov/ESGC-cost-performance .
Zivar, D., Kumar, S. & Foroozesh, J. Underground hydrogen storage: a comprehensive review. Int. J. Hydrog. Energy 46, 23436–23462 (2021). (PMID: 10.1016/j.ijhydene.2020.08.138)
Andersson, J. & Grönkvist, S. A comparison of two hydrogen storages in a fossil-free direct reduced iron process. Int. J. Hydrog. Energy 46, 28657–28674 (2021). (PMID: 10.1016/j.ijhydene.2021.06.092)
Andersson, J. Application of liquid hydrogen carriers in hydrogen steelmaking. Energies 14, 1392 (2021). (PMID: 10.3390/en14051392)
Rosner, F. et al. Green steel: design and cost analysis of hydrogen-based direct iron reduction. Energy Environ. Sci. 16, 4121–4134 (2023). (PMID: 10.1039/D3EE01077E)
Nazir, H. et al. Is the H 2 economy realizable in the foreseeable future? part I: H 2 production methods. Int. J. Hydrog. Energy 45, 13777–13788 (2020). (PMID: 10.1016/j.ijhydene.2020.03.092)
Nazir, H. et al. Is the H 2 economy realizable in the foreseeable future? part II: H 2 storage, transportation, and distribution. Int. J. Hydrog. Energy 45, 20693–20708 (2020). (PMID: 10.1016/j.ijhydene.2020.05.241)
Nazir, H. et al. Is the H 2 economy realizable in the foreseeable future? part III: H 2 usage technologies, applications, and challenges and opportunities. Int. J. Hydrog. Energy 45, 28217–28239 (2020). (PMID: 10.1016/j.ijhydene.2020.07.256)
Ogden, J. M. Prospects for building a hydrogen energy infrastructure. Annu. Rev. Energy Environ. 24, 227–279 (1999). (PMID: 10.1146/annurev.energy.24.1.227)
Midilli, A., Ay, M., Dincer, I. & Rosen, M. A. On hydrogen and hydrogen energy strategies. Renew. Sustain. Energy Rev. 9, 255–271 (2005). (PMID: 10.1016/j.rser.2004.05.003)
Cipriani, G. et al. Perspective on hydrogen energy carrier and its automotive applications. Int. J. Hydrog. Energy 39, 8482–8494 (2014). (PMID: 10.1016/j.ijhydene.2014.03.174)
Hosseini, S. E. & Wahid, M. A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. Int. J. Energy Res. 44, 4110–4131 (2020). (PMID: 10.1002/er.4930)
Kojima, Y. Hydrogen storage materials for hydrogen and energy carriers. Int. J. Hydrog. Energy 44, 18179–18192 (2019). (PMID: 10.1016/j.ijhydene.2019.05.119)
Lange, J. P. Towards circular carbo-chemicals – the metamorphosis of petrochemicals. Energy Environ. Sci. 14, 4358–4376 (2021). (PMID: 10.1039/D1EE00532D)
Sharifzadeh, M. et al. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog. Energy Combust. Sci. 71, 1–80 (2019). (PMID: 10.1016/j.pecs.2018.10.006)
Ilic, D., Williams, K., Farnish, R., Webb, E. & Liu, G. On the challenges facing the handling of solid biomass feedstocks. Biofuels Bioprod. Biorefin. 12, 187–202 (2018). (PMID: 10.1002/bbb.1851)
Nunes, L. J. R., Causer, T. P. & Ciolkosz, D. Biomass for energy: a review on supply chain management models. Renew. Sustain. Energy Rev. 120, 109658 (2020). (PMID: 10.1016/j.rser.2019.109658)
Walker, T. W., Motagamwala, A. H., Dumesic, J. A. & Huber, G. W. Fundamental catalytic challenges to design improved biomass conversion technologies. J. Catal. 369, 518–525 (2019). (PMID: 10.1016/j.jcat.2018.11.028)
Mitsos, A. et al. Challenges in process optimization for new feedstocks and energy sources. Comput. Chem. Eng. 113, 209–221 (2018). (PMID: 10.1016/j.compchemeng.2018.03.013)
Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022). (PMID: 10.5194/essd-14-1917-2022)
Allan, R. P. Frequently Asked Questions. The Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/ar6/wg1/downloads/faqs/IPCC_AR6_WGI_FAQs_Compiled.pdf (2021).
FAQ Chapter 4. The Intergovernmental Panel on Climate Change https://www.ipcc.ch/sr15/faq/faq-chapter-4/ (2018).
Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO 2 fixation. Chem. Rev. 113, 6621–6658 (2013). (PMID: 23767781389511010.1021/cr300463y)
Brandl, P., Bui, M., Hallett, J. P. & Mac Dowell, N. Beyond 90% capture: possible, but at what cost? Int. J. Greenh. Gas Control 105, 103239 (2021). (PMID: 10.1016/j.ijggc.2020.103239)
Siegelman, R. L., Kim, E. J. & Long, J. R. Porous materials for carbon dioxide separations. Nat. Mater. 20, 1060–1072 (2021). (PMID: 10.1038/s41563-021-01054-8)
Danaci, D., Bui, M., Petit, C. & Mac Dowell, N. En route to zero emissions for power and industry with amine-based post-combustion capture. Environ. Sci. Technol. 55, 10619–10632 (2021). (PMID: 3424199710.1021/acs.est.0c07261)
Raza, A., Gholami, R., Rezaee, R., Rasouli, V. & Rabiei, M. Significant aspects of carbon capture and storage – a review. Petroleum 5, 335–340 (2019). (PMID: 10.1016/j.petlm.2018.12.007)
Ishaq, M. et al. Exploring the potential of highly selective alkanolamine containing deep eutectic solvents based supported liquid membranes for CO 2 capture. J. Mol. Liq. 340, 117274 (2021). (PMID: 10.1016/j.molliq.2021.117274)
Sjostrom, S. & Krutka, H. Evaluation of solid sorbents as a retrofit technology for CO 2 capture. Fuel 89, 1298–1306 (2010). (PMID: 10.1016/j.fuel.2009.11.019)
Wang, M., Joel, A. S., Ramshaw, C., Eimer, D. & Musa, N. M. Process intensification for post-combustion CO 2 capture with chemical absorption: a critical review. Appl. Energy 158, 275–291 (2015). (PMID: 10.1016/j.apenergy.2015.08.083)
Liu, F. et al. Thermodynamics and kinetics of novel amino functionalized ionic liquid organic solvent for CO 2 capture. Sep. Purif. Technol. 286, 120457 (2022). (PMID: 10.1016/j.seppur.2022.120457)
Li, X. et al. Low energy-consuming CO 2 capture by phase change absorbents of amine/alcohol/H 2 O. Sep. Purif. Technol. 275, 119181 (2021). (PMID: 10.1016/j.seppur.2021.119181)
Wu, X. et al. Electrochemically-mediated amine regeneration Of CO 2 capture: from electrochemical mechanism to bench-scale visualization study. Appl. Energy 302, 117554 (2021). (PMID: 10.1016/j.apenergy.2021.117554)
Rahimi, M. et al. An electrochemically mediated amine regeneration process with a mixed absorbent for postcombustion CO 2 capture. Environ. Sci. Technol. 54, 8999–9007 (2020). (PMID: 3255155010.1021/acs.est.0c02595)
Diederichsen, K. M. et al. Electrochemical methods for carbon dioxide separations. Nat. Rev. Methods Primers 2, 68 (2022). (PMID: 10.1038/s43586-022-00148-0)
Kersey, K. et al. Encapsulation of nanoparticle organic hybrid materials within electrospun hydrophobic polymer/ceramic fibers for enhanced CO 2 capture. Adv. Funct. Mater. 33, 2301649 (2023).
Zeeshan, M., Kidder, M. K., Pentzer, E., Getman, R. B. & Gurkan, B. Direct air capture of CO 2 : from insights into the current and emerging approaches to future opportunities. Front. Sustain. 4, https://doi.org/10.3389/frsus.2023.1167713 (2023).
Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO 2 from ambient air. Chem. Rev. 116, 11840–11876 (2016). (PMID: 2756030710.1021/acs.chemrev.6b00173)
Zhu, X. et al. Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 51, 6574–6651 (2022). (PMID: 3581569910.1039/D1CS00970B)
Zheng, R. F. et al. A single-component water-lean post-combustion CO 2 capture solvent with exceptionally low operational heat and total costs of capture – comprehensive experimental and theoretical evaluation. Energy Environ. Sci. 13, 4106–4113 (2020). (PMID: 10.1039/D0EE02585B)
Jiang, Y. et al. Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents. J. Clean. Prod. 388, 135696 (2023). (PMID: 10.1016/j.jclepro.2022.135696)
Baciocchi, R., Storti, G. & Mazzotti, M. Process design and energy requirements for the capture of carbon dioxide from air. Chem. Eng. Process. 45, 1047–1058 (2006). (PMID: 10.1016/j.cep.2006.03.015)
Zeman, F. Energy and material balance of CO 2 capture from ambient air. Environ. Sci. Technol. 41, 7558–7563 (2007). (PMID: 1804454110.1021/es070874m)
Singh, A. & Stéphenne, K. Shell Cansolv CO 2 capture technology: achievement from first commercial plant. Energy Procedia 63, 1678–1685 (2014). (PMID: 10.1016/j.egypro.2014.11.177)
Shewchuk, S. R., Mukherjee, A. & Dalai, A. K. Selective carbon-based adsorbents for carbon dioxide capture from mixed gas streams and catalytic hydrogenation Of CO 2 into renewable energy source: a review. Chem. Eng. Sci. 243, 116735 (2021). (PMID: 10.1016/j.ces.2021.116735)
Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018). (PMID: 10.1039/C7EE02342A)
Erans, M. et al. Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ. Sci. 15, 1360–1405 (2022). (PMID: 10.1039/D1EE03523A)
Digdaya, I. A. et al. A direct couple electrochemical system for capture and conversion of CO 2 from oceanwater. Nat. Commun. 11, 4412 (2020). (PMID: 32887872747406210.1038/s41467-020-18232-y)
Gruber, N. et al. The oceanic sink for anthropogenic CO 2 from 1994 to 2007. Science 363, 1193–1199 (2019). (PMID: 3087251910.1126/science.aau5153)
Jayarathna, C., Maelum, M., Karunarathne, S., Andrenacci, S. & Haugen, H. A. Review on direct ocean capture (DOC) technologies. In Proc. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16. 23–24 Oct 2022 (GHGT, 2022); https://doi.org/10.2139/ssrn.4282969 .
Kim, S. et al. Asymmetric chloride-mediated electrochemical process for CO 2 removal from oceanwater. Energy Environ. Sci. 16, 2030–2044 (2023). (PMID: 10.1039/D2EE03804H)
Willauer, H. D., DiMascio, F., Hardy, D. R. & Williams, F. W. Feasibility of CO 2 extraction from seawater and simultaneous hydrogen gas generation using a novel and robust electrolytic cation exchange module based on continuous electrodeionization technology. Ind. Eng. Chem. Res. 53, 12192–12200 (2014). (PMID: 10.1021/ie502128x)
Kothandaraman, J. & Heldebrant, D. J. Catalytic coproduction of methanol and glycol in one pot from epoxide, CO 2 , and H 2 . RSC Adv. 10, 42557–42563 (2020). (PMID: 35516757905797010.1039/D0RA09459E)
LanzaJet technology to be deployed across three different projects in the UK. LANZAJET https://www.lanzajet.com/lanzajet-technology-to-be-deployed-across-three-different-projects-in-the-uk-to-meet-growing-demand-for-sustainable-aviation-fuels/ (2021).
Dagle, R. A., Winkelman, A. D., Ramasamy, K. K., Lebarbier Dagle, V. & Weber, R. S. Ethanol as a renewable building block for fuels and chemicals. Ind. Eng. Chem. Res. 59, 4843–4853 (2020). (PMID: 10.1021/acs.iecr.9b05729)
Lilga, M. A. H. et al. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels. US patent 10,005,974 (2018).
Efroymson, R. A., Langholtz, M. H., Johnson, K. E. & Stokes, B. J. (eds) 2016 Billion-ton Report: Advancing Domestic Resources for a Thriving Bioeconomy Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1 (Oak Ridge National Laboratory, 2017).
Kopittke, P. M. et al. Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Crit. Rev. Environ. Sci. Technol. 52, 4308–4324 (2022). (PMID: 10.1080/10643389.2021.2024484)
Larson, E. et al. Net-zero America: Potential Pathways, Infrastructure, and Impacts. (NetzeroAmerica, Princeton University, 2021).
2023 Billion-Ton Report: An Assessment of U.S. Renewable Carbon Resources (Department of Energy, 2023); https://www.energy.gov/eere/bioenergy/2023-billion-ton-report-assessment-us-renewable-carbon-resources .
O’Malley, J., Pavlenko, N. & Searle, S. Estimating sustainable aviation fuel feedstock availability to meet growing European Union demand. International Council On Clean Transportation https://theicct.org/wp-content/uploads/2021/06/Sustainable-aviation-fuel-feedstock-eu-mar2021.pdf (2021).
Capaz, R. S., Guida, E., Seabra, J. E. A., Osseweijer, P. & Posada, J. A. Mitigating carbon emissions through sustainable aviation fuels: costs and potential. Biofuels Bioprod. Biorefin. 15, 502–524 (2020). (PMID: 10.1002/bbb.2168)
Pavlenko, N. S. & Searle, S. Assessing the sustainability implications of alternative aviation fuels. International Council On Clean Transportation https://theicct.org/wp-content/uploads/2021/06/Alt-aviation-fuel-sustainability-mar2021.pdf (2021).
Holladay, J., Abdullah, Z. & Heyne, J. Sustainable Aviation Fuel: Review of Technical Pathways. (US Department of Energy, Office of Energy Efficiency & Renewable Energy, 2020).
Grim, R. G. et al. Electrifying the production of sustainable aviation fuel: the risks, economics, and environmental benefits of emerging pathways including CO 2 . Energy Environ. Sci. 15, 4798–4812 (2022). (PMID: 10.1039/D2EE02439J)
Becken, S., Mackey, B. & Lee, D. S. Implications of preferential access to land and clean energy for sustainable aviation fuels. Sci. Total Environ. 886, 163883 (2023). (PMID: 3716407210.1016/j.scitotenv.2023.163883)
Rogers, J. N. et al. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. Biofuels Bioprod. Biorefin. 11, 110–128 (2016). Evaluation of strategies for transforming biomass resources into fuels (both on road and aviation), energy and bio-based chemicals to achieve a billion tons bioeconomy by 2030. (PMID: 10.1002/bbb.1728)
Sustainable aviation fuel grand challenge. Office of Energy Efficiency & Renewable Energy, Bioenergy Technologies Office https://www.energy.gov/eere/bioenergy/sustainable-aviation-fuel-grand-challenge .
WAYPOINT 2050: Balancing Growth in Connectivity with a Comprehensive Global Air Transport Response to the Climate Emergency. Aviation Benefits. https://aviationbenefits.org/media/167187/w2050_full.pdf (2020).
Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014). (PMID: 10.1038/nclimate2097)
Robertson, G. P., Hamilton, S. K., Paustian, K. & Smith, P. Land-based climate solutions for the United States. Glob. Change Biol. 28, 4912–4919 (2022). (PMID: 10.1111/gcb.16267)
Land use. Food and Agricultural Organization of the United Nations https://www.fao.org/faostat/en/#data/RL (2021).
Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO 2 -enriched atmosphere. Nature 411, 469–472 (2001). (PMID: 1137367710.1038/35078064)
Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018). (PMID: 30443593623552310.1126/sciadv.aat1869)
The art of integrity: ecosystem marketplace’s state of the voluntary carbon markets 2022 Q3. Ecosystem Marketplace A Forest Trends Initiative https://www.ecosystemmarketplace.com/publications/state-of-the-voluntary-carbon-markets-2022/ (2022).
Khanna, M. Nexus between food, energy and ecosystem services in the Mississippi River basin: policy implications and challenges. Choices 32, 1–9 (2017).
Plastina, A. & Sawadgo, W. Cover crops and no-till in the I-States: non-permanence and carbon markets. Center for Agricultural and Rural Development (CARD) at Iowa State University https://ideas.repec.org/p/ias/cpaper/apr-fall-2021-7.html (2021).
Prokopy, L. S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature. J. Soil Water Conserv. 74, 520–534 (2019). (PMID: 10.2489/jswc.74.5.520)
Fairley, P. How to rescue biofuels from a sustainable dead end. Nature 611, S15–S17 (2022). (PMID: 3638554810.1038/d41586-022-03649-w)
Seyed Hosseini, N., Shang, H. & Scott, J. A. Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology. Energy 146, 47–56 (2018). (PMID: 10.1016/j.energy.2017.08.085)
Wu, W., Lin, K. H. & Chang, J. S. Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. Bioresour. Technol. 267, 550–559 (2018). (PMID: 3005371310.1016/j.biortech.2018.07.083)
Mandik, Y. I. et al. Zero-waste biorefinery of oleaginous microalgae as promising sources of biofuels and biochemicals through direct transesterification and acid hydrolysis. Process Biochem. 95, 214–222 (2020). (PMID: 10.1016/j.procbio.2020.02.011)
Bhatia, S. K., Bhatia, R. K., Jeon, J.-M., Kumar, G. & Yang, Y.-H. Carbon dioxide capture and bioenergy production using biological system – a review. Renew. Sustain. Energy Rev. 110, 143–158 (2019). (PMID: 10.1016/j.rser.2019.04.070)
Rahman, F. A. et al. Pollution to solution: capture and sequestration of carbon dioxide (CO 2 ) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 71, 112–126 (2017). (PMID: 10.1016/j.rser.2017.01.011)
Hossain, N., Mahlia, T. M. I. & Saidur, R. Latest development in microalgae-biofuel production with nano-additives. Biotechnol. Biofuels 12, 125 (2019). (PMID: 31139255652830110.1186/s13068-019-1465-0)
Kelloway, A. & Daoutidis, P. Process synthesis of biorefineries: optimization of biomass conversion to fuels and chemicals. Ind. Eng. Chem. Res. 53, 5261–5273 (2013). (PMID: 10.1021/ie4018572)
Liu, B. & Zhang, Z. Catalytic conversion of biomass into chemicals and fuels over magnetic catalysts. ACS Catal. 6, 326–338 (2015). (PMID: 10.1021/acscatal.5b02094)
Siddiqui, S., Friedman, D. & Alper, J. Opportunities and Obstacles in Large-Scale Biomass Utilization: The Role of the Chemical Sciences and Engineering Communities: A Workshop Summary (National Academies Press, 2012).
Gnanasekaran, L., Priya, A. K., Thanigaivel, S., Hoang, T. K. A. & Soto-Moscoso, M. The conversion of biomass to fuels via cutting-edge technologies: explorations from natural utilization systems. Fuel 331, 125668 (2023). (PMID: 10.1016/j.fuel.2022.125668)
Taarning, E. et al. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci. 4, 793–804 (2011). (PMID: 10.1039/C004518G)
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010). (PMID: 2097572210.1038/ncomms1053)
Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016). (PMID: 10.1111/gcb.13178)
Ebikade, E. O., Sadula, S., Gupta, Y. & Vlachos, D. G. A review of thermal and thermocatalytic valorization of food waste. Green Chem. 23, 2806–2833 (2021). Examines valorization of food waste to produce important biobased fuels, bulk chemicals, dietary supplements, adsorbents and antibacterial products, as an underutilized alternative energy source. (PMID: 10.1039/D1GC00536G)
Tons of food lost or wasted globally, this year. The World Counts https://www.theworldcounts.com/challenges/people-and-poverty/hunger-and-obesity/food-waste-statistics .
Frequent questions about landfill gas. US Environmental Protection Agency, Landfill Methane Outreach Program (LMOP) https://www.epa.gov/lmop/frequent-questions-about-landfill-gas#:~:Text=MSW%20landfills%20contributed%2094.2%20MMTCO,(2.3%20percent%20of%20total (2023).
Gupta, Y., Bhattacharyya, S. & Vlachos, D. G. Extraction of valuable chemicals from food waste via computational solvent screening and experiments. Sep. Purif. Technol. 316, 123719 (2023). (PMID: 10.1016/j.seppur.2023.123719)
Ebikade, E. et al. The future is garbage: repurposing of food waste to an integrated biorefinery. ACS Sustain. Chem. Eng. 8, 8124–8136 (2020). (PMID: 10.1021/acssuschemeng.9b07479)
Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A. & Huber, G. W. Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chem. 20, 1824–1834 (2018). (PMID: 10.1039/C8GC00517F)
Pham, T. P., Kaushik, R., Parshetti, G. K., Mahmood, R. & Balasubramanian, R. Food waste-to-energy conversion technologies: current status and future directions. Waste Manag. 38, 399–408 (2015). (PMID: 2555566310.1016/j.wasman.2014.12.004)
Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006). (PMID: 1696792810.1021/cr068360d)
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017). (PMID: 28776036551710710.1126/sciadv.1700782)
New Greenpeace report: plastic recycling is a dead-end street — year after year, plastic recycling declines even as plastic waste increases. Greenpeace https://www.greenpeace.org/usa/news/new-greenpeace-report-plastic-recycling-is-a-dead-end-street-year-after-year-plastic-recycling-declines-even-as-plastic-waste-increases/ (2022).
Osborne, Margaret. At least 85 percent of U.S. plastic waste went to landfills in 2021. Smithsonian Magazine (9 May 2022).
The Future of Plastic. Discovery Report (Chemical and Engineering News, 2020).
Payne, J. & Jones, M. D. The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities. ChemSusChem 14, 4041–4070 (2021). (PMID: 33826253851804110.1002/cssc.202100400)
Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018). (PMID: 2903571310.1016/j.jhazmat.2017.10.014)
Mirkarimi, S. M. R., Bensaid, S. & Chiaramonti, D. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: a review. Appl. Energy 327, 120040 (2022). (PMID: 10.1016/j.apenergy.2022.120040)
Quesada, L., Calero, M., Martín-Lara, M. Á., Pérez, A. & Blázquez, G. Production of an alternative fuel by pyrolysis of plastic wastes mixtures. Energy Fuels 34, 1781–1790 (2020). (PMID: 10.1021/acs.energyfuels.9b03350)
Soni, V. K. et al. Thermochemical recycling of waste plastics by pyrolysis: a review. Energy Fuels 35, 12763–12808 (2021). (PMID: 10.1021/acs.energyfuels.1c01292)
Antelava, A. et al. Energy potential of plastic waste valorization: a short comparative assessment of pyrolysis versus gasification. Energy Fuels 35, 3558–3571 (2021). (PMID: 10.1021/acs.energyfuels.0c04017)
Lopez, G. et al. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sust. Energy Rev. 82, 576–596 (2018). (PMID: 10.1016/j.rser.2017.09.032)
Celik, G. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019). (PMID: 31807681689186410.1021/acscentsci.9b00722)
Rorrer, J. E., Beckham, G. T. & Roman-Leshkov, Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au 1, 8–12 (2021). (PMID: 3446726710.1021/jacsau.0c00041)
Tan, T. et al. Upcycling plastic wastes into value-added products by heterogeneous catalysis. ChemSusChem 15, e202200522 (2022). (PMID: 3543824010.1002/cssc.202200522)
Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020). (PMID: 10.1002/anie.201915651)
Mason, A. H. et al. Rapid atom-efficient polyolefin plastics hydrogenolysis mediated by a well-defined single-site electrophilic/cationic organo-zirconium catalyst. Nat. Commun. 13, 7187 (2022). (PMID: 36418305968444010.1038/s41467-022-34707-6)
Chen, L. et al. Disordered, sub-nanometer Ru structures on CeO 2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal. 12, 4618–4627 (2022). (PMID: 10.1021/acscatal.2c00684)
Nakicenovic, N., Gritsevskii, A., Grubler, A. & Riahi, K. Global Natural Gas Perspectives (International Institute for Applied Systems Analysis (IIASA), Austria and International Gas Union, Office of the Secretary General, Denmark, 2000).
Vedachalam, N., Srinivasalu, S., Rajendran, G., Ramadass, G. A. & Atmanand, M. A. Review of unconventional hydrocarbon resources in major energy consuming countries and efforts in realizing natural gas hydrates as a future source of energy. J. Nat. Gas Sci. Eng. 26, 163–175 (2015). (PMID: 10.1016/j.jngse.2015.06.008)
Natural gas left in the world (BOE). WORLDOMETER https://www.worldometers.info/gas/ (2017).
Bernstein, L. et al. Climate Change 2007 Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change, 2007).
AgSTAR data and trends. US Environmental Protection Agency https://www.epa.gov/agstar/agstar-data-and-trends (2023).
Fact sheet | biogas: converting waste to energy. Environmental and Energy Study Institute https://www.eesi.org/papers/view/fact-sheet-biogasconverting-waste-to-energy (2017).
Sun, L., Wang, Y., Guan, N. & Li, L. Methane activation and utilization: current status and future challenges. Energy Technol. 8, 1900826 (2020). (PMID: 10.1002/ente.201900826)
Fan, Z., Weng, W., Zhou, J., Gu, D. & Xiao, W. Catalytic decomposition of methane to produce hydrogen: a review. J. Energy Chem. 58, 415–430 (2021). (PMID: 10.1016/j.jechem.2020.10.049)
Xu, M. et al. Promotional role of NiCu alloy in catalytic performance and carbon properties for CO 2 -free H 2 production from thermocatalytic decomposition of methane. Catal. Sci. Technol. 13, 3231–3244 (2023). (PMID: 10.1039/D2CY01782B)
C, P. et al. Methane pyrolysis with a molten Cu–Bi alloy catalyst. ACS Catal. 9, 8337–8345 (2019). (PMID: 10.1021/acscatal.9b01833)
J, Z. et al. Catalytic methane pyrolysis with liquid and vapor phase tellurium. ACS Catal. 10, 8223–8230 (2020). (PMID: 10.1021/acscatal.0c00805)
Kang, D. et al. Catalytic methane pyrolysis in molten alkali chloride salts containing iron. ACS Catal. 10, 7032–7042 (2020). (PMID: 10.1021/acscatal.0c01262)
Bomgardner, M. N. Synthetic genomics’ new plan for algae. Chemical and Engineering News (18 August 2014).
Bettenhausen, C. Will ethanol fuel a low-carbon future? Chemical and Engineering News (12 February 2023).
Bettenhausen, C. LanzaTech completes SPAC merger. Chemical and Engineering News (24 February 2023).
Youngs, D. E. Process and apparatus for recovering energy from low energy density gas stream. US patent 11,614,321 B1 (2023).
Bettenhausen, C. Twelve to make SAF in Washington state. Chemical and Engineering News (30 December 2023).
Kuhl, K. P., Cave, E. R. & Leonard, G. Reactor with advanced architecture for the electrochemical reaction of CO2, CO and other chemical compounds. US patent 11,680,327 B2 (2023).
Bettenhausen, C. Waste-to-fuel approach takes 2 steps forward. Chemical and Engineering News (29 December 2022).
Tiverios, P. G., Lucas, S. H. & Rich, L. L. Processes for producing high biogenic concentration fischer-tropsch liquids derived from municipal solid wastes (MSW) feedstocks. US patent 11,655,426 (2023).
Bagi, Z. et al. Biomethane: the energy storage, platform chemical and greenhouse gas mitigation target. Anaerobe 46, 13–22 (2017). (PMID: 2834155810.1016/j.anaerobe.2017.03.001)
Prajapati, R., Kohli, K., Maity, S. K. & Sharma, B. K. Potential chemicals from plastic wastes. Molecules 26, 3175 (2021). (PMID: 34073300819925410.3390/molecules26113175)
Dogu, O. et al. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 84, 100901 (2021).
Audiso, G. & Bertini, F. Molecular weight and pyrolysis products distribution of polymers: I. Polystyrene. J. Anal. Appl. Pyrolysis 24, 61–74 (1992). (PMID: 10.1016/0165-2370(92)80005-7)
Aguado, J. & Serrano, D. P. in Feedstock Recycling of Plastic Wastes (ed. Clark, J. H.) 31–58 (The Royal Society of Chemistry, 1999).
Williams, P. T. Hydrogen and carbon nanotubes from pyrolysis-catalysis of waste plastics: a review. Waste Biomass Valorization 12, 1–28 (2020). (PMID: 10.1007/s12649-020-01054-w)
Szmant, H. H. Organic Building Blocks of the Chemical Industry (Wiley, 1989).
Tonkovich, A. L. Y. & Gerber, M. A. The Top 50 Commodity Chemicals: Impact of Catalytic Process Limitations on Energy, Environment, and Economics (Pacific Northwest National Laboratory, 1995).
Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 212, 17–60 (2001). (PMID: 10.1016/S0926-860X(00)00843-7)
Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854-866 (2022). This review collects and classifies terms for catalyst deactivation across disciplines and provides an analysis of deactivation mechanisms to mitigate catalyst deactivation.
Delmon, B. Characterization of catalyst deactivation: industrial and laboratory time scales. Appl. Catal. 15, 1–16 (1985). (PMID: 10.1016/S0166-9834(00)81482-7)
Sholl, D. S. & Lively, R. P. Exemplar mixtures for studying complex mixture effects in practical chemical separations. JACS Au 2, 322–327 (2022). Outlines and recommendations for early-stage research that impacts practical applications in chemical separations. (PMID: 35252982888960410.1021/jacsau.1c00490)
Rappé, K. G. et al. Aftertreatment protocols for catalyst characterization and performance evaluation: low-temperature oxidation, storage, three-way, and NH 3 -SCR catalyst test protocols. Emiss. Control Sci. Technol. 5, 183–214 (2019). (PMID: 10.1007/s40825-019-00120-7)
Bui, L. et al. A hybrid modeling approach for catalyst monitoring and lifetime prediction. ACS Eng. Au 2, 17–26 (2021). (PMID: 10.1021/acsengineeringau.1c00015)
Bogojeski, M., Sauer, S., Horn, F. & Müller, K.-R. Forecasting industrial aging processes with machine learning methods. Comput. Chem. Eng. 144 (2021).
Marquetand, P. Recent progress in electro- and photocatalyst discovery with machine learning. Chem. Rev. 122, 15996–15997 (2022). (PMID: 3634945710.1021/acs.chemrev.2c00703)
Weber, R. S. et al. Modularized production of fuels and other value-added products from distributed, wasted, or stranded feedstocks. Wiley Interdiscip. Rev. Energy Environ. 7, e308 (2018).
Boateng, A. & Harlow, S. J. Research summary: exploring on-farm pyrolysis processing of biofuels. Farm Energy https://farm-energy.extension.org/research-summary-exploring-on-farm-pyrolysis-processing-of-biofuels/ (2019).
Energy Lab 2.0. Karlsruhe Institute of Technology https://www.elab2.kit.edu/english/index.php .
Harrison, K., Dowe, N. BETO 2021 peer review: biomethanation to upgrade biogas to pipeline grade methane. NREL https://www.nrel.gov/docs/fy21osti/79311.pdf (2021).
What is pyrolysis? US Department of Agriculture https://www.ars.usda.gov/northeast-area/wyndmoor-pa/eastern-regional-research-center/docs/biomass-pyrolysis-research-1/what-is-pyrolysis/ (2021).
Enerkem https://enerkem.com/ .
Skaggs, R. L., Coleman, A. M., Seiple, T. E. & Milbrandt, A. R. Waste-to-energy biofuel production potential for selected feedstocks in the conterminous United States. Renew. Sustain. Energy Rev. 82, 2640–2651 (2018). Estimates quantities and geographic distribution of potential biocrude oil production from selected organic wastes, including wastewater sludge, animal manure, food waste, fats oils and greases, and a hydrothermal liquefaction. (PMID: 10.1016/j.rser.2017.09.107)
Badgett, A. & Milbrandt, A. Food waste disposal and utilization in the United States: a spatial cost benefit analysis. J. Clean. Prod. 314, 128057 (2021). (PMID: 10.1016/j.jclepro.2021.128057)
Laureanti, J. A., O’Hagan, M. & Shaw, W. J. Chicken fat for catalysis: a scaffold is as important for molecular complexes for energy transformations as it is for enzymes in catalytic function. Sustain. Energy Fuels 3, 3260–3278 (2019). Describes the use of biomimetic processes observed in enzymes to afford unrealized catalytic processes taking advantage of molecular chemical transformations. (PMID: 10.1039/C9SE00229D)
Dutta, A., Appel, A. M. & Shaw, W. J. Designing electrochemically reversible H 2 oxidation and production catalysts. Nat. Rev. Chem. 2, 244–252 (2018). (PMID: 10.1038/s41570-018-0032-8)
Shaw, W. J. The outer-coordination sphere: incorporating amino acids and peptides as ligands for homogeneous catalysts to mimic enzyme function. Catal. Rev. Sci. Eng. 54, 489–550 (2012). (PMID: 10.1080/01614940.2012.679453)
Bell, A. T., Gates, B. C., Ray, D. & Thompson, M. R. Basic Research Needs: Catalysis for Energy. Report from the U.S. Department of Energy Basic Energy Science Workshop August 6–8 2007 (Pacific Northwest National Laboratory, 2008).
Lee, J. & Goodey, N. M. Catalytic contributions from remote regions of enzyme structure. Chem. Rev. 111, 7595–7624 (2011). (PMID: 2192319210.1021/cr100042n)
Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2020). (PMID: 3182361210.1021/acs.accounts.9b00539)
Biddinger, E. J. & Modestino, M. A. Electro-organic syntheses for green chemical manufacturing. Electrochem. Soc. Interface 29, 43–47 (2020). (PMID: 10.1149/2.F06203IF)
Ryu, J. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 4, 742–752 (2021). (PMID: 10.1038/s41929-021-00666-2)
Koshy, D. M. et al. Bridging thermal catalysis and electrocatalysis: catalyzing CO 2 conversion with carbon-based materials. Angew. Chem. Int. Ed. 60, 17472–17480 (2021). (PMID: 10.1002/anie.202101326)
De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019). (PMID: 3102389610.1126/science.aav3506)
Danly, D. E. Development and commercialization of the Monsanto electrochemical adiponitrile process. J. Electrochem. Soc. 131, 435C–442C (1984). (PMID: 10.1149/1.2115324)
Cardoso, D. S. P., Šljukić, B., Santos, D. M. F. & Sequeira, C. A. C. Organic electrosynthesis: from laboratorial practice to industrial applications. Org. Process Res. Dev. 21, 1213–1226 (2017). (PMID: 10.1021/acs.oprd.7b00004)
Mu, Y. et al. Kinetic study of nonthermal plasma activated catalytic CO 2 hydrogenation over Ni supported on silica catalyst. Ind. Eng. Chem. Res. 59, 9478–9487 (2020). (PMID: 10.1021/acs.iecr.0c01477)
Deng, B. et al. Urban mining by flash Joule heating. Nat. Commun. 12, 5794 (2021). (PMID: 34608143849040310.1038/s41467-021-26038-9)
Wang, W. et al. Induction heating: an enabling technology for the heat management in catalytic processes. ACS Catal. 9, 7921–7935 (2019). (PMID: 10.1021/acscatal.9b02471)
Yassine, S. R., Fatfat, Z., Darwish, G. H. & Karam, P. Localized catalysis driven by the induction heating of magnetic nanoparticles. Catal. Sci. Technol. 10, 3890–3896 (2020). (PMID: 10.1039/D0CY00439A)
Mallapragada, D. S. et al. Decarbonization of the chemical industry through electrification: barriers and opportunities. Joule 7, 23–41 (2023). (PMID: 10.1016/j.joule.2022.12.008)
Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013). (PMID: 2353959910.1126/science.1231631)
Biswas, A. N. et al. Tandem electrocatalytic–thermocatalytic reaction scheme for CO 2 conversion to C3 oxygenates. ACS Energy Lett. 7, 2904–2910 (2022). (PMID: 10.1021/acsenergylett.2c01454)
Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018). (PMID: 10.1038/s41929-018-0045-1)
Mehta, P. et al. Plasma-catalytic ammonia synthesis beyond the equilibrium limit. ACS Catal. 10, 6726–6734 (2020). (PMID: 10.1021/acscatal.0c00684)
Liu, S., Winter, L. R. & Chen, J. G. Review of plasma-assisted catalysis for selective generation of oxygenates from CO 2 and CH 4 . ACS Catal. 10, 2855–2871 (2020). Overview of non-thermal plasma to promote the co-conversion of CO 2 and CH 4 to value-added chemicals. (PMID: 10.1021/acscatal.9b04811)
Nangle, S. N., Sakimoto, K. K., Silver, P. A. & Nocera, D. G. Biological-inorganic hybrid systems as a generalized platform for chemical production. Curr. Opin. Chem. Biol. 41, 107–113 (2017). (PMID: 2913655710.1016/j.cbpa.2017.10.023)
Segev, G. et al. The 2022 solar fuels roadmap. J. Phys. D Appl. Phys. 55, 323003 (2022).
Sherbo, R. S., Loh, D. M. & Nocera, D. G. in: Carbon Dioxide Electrochemistry Energy: Homogeneous and Heterogeneous Catalysis (eds Robert, M. et al.) Ch. 8 (The Royal Society of Chemistry, 2020).
Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017). (PMID: 2894540710.1021/acs.accounts.6b00615)
Nocera, D. G. Proton-coupled electron transfer: the engine of energy conversion and storage. J. Am. Chem. Soc. 144, 1069–1081 (2022). (PMID: 3502374010.1021/jacs.1c10444)
Cannella, D. & Jørgensen, H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol. Bioeng. 111, 59–68 (2014). (PMID: 2402267410.1002/bit.25098)
Ladisch, M. R. Bioseparations in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2000).
Liu, Z. & Smith, S. R. Enzyme recovery from biological wastewater treatment. Waste Biomass Valorization 12, 4185–4211 (2020). (PMID: 10.1007/s12649-020-01251-7)
National Academies of Sciences, Engineering & Medicine A Research Agenda for Transforming Separation Science (National Academies Press, 2019).
Stankiewicz, A. Reactive separations for process intensification: an industrial perspective. Chem. Eng. Process. 42, 137–144 (2003). (PMID: 10.1016/S0255-2701(02)00084-3)
Harmsen, G. J. Reactive distillation: the front-runner of industrial process intensification. Chem. Eng. Process. 46, 774–780 (2007). (PMID: 10.1016/j.cep.2007.06.005)
Kiss, A. A. & Bildea, C. S. A review of biodiesel production by integrated reactive separation technologies. J. Chem. Technol. Biotechnol. 87, 861–879 (2012). (PMID: 10.1002/jctb.3785)
Brunetti, A., Caravella, A., Drioli, E. & Barbieri, G. in Membrane Engineering for the Treatment of Gases: Volume 2: Gas-separation Issues Combined with Membrane Reactors 2nd edn (eds Drioli, E. et al.) Ch. 1 (The Royal Society of Chemistry, 2017).
Buckingham, J., Reina, T. R. & Duyar, M. S. Recent advances in carbon dioxide capture for process intensification. Carbon Capture Sci. Technol. 2, 100031 (2022). (PMID: 10.1016/j.ccst.2022.100031)
Shaffer, G. Long-term effectiveness and consequences of carbon dioxide sequestration. Nat. Geosci. 3, 464–467 (2010). (PMID: 10.1038/ngeo896)
Lackner, K. S. Climate change. A Guide to CO 2 sequestration. Science 300, 1677–1678 (2003). (PMID: 1280552910.1126/science.1079033)
Omodolor, I. S., Otor, H. O., Andonegui, J. A., Allen, B. J. & Alba-Rubio, A. C. Dual-function materials for CO 2 capture and conversion: a review. Ind. Eng. Chem. Res. 59, 17612–17631 (2020). (PMID: 10.1021/acs.iecr.0c02218)
Gadikota, G. Multiphase carbon mineralization for the reactive separation of CO 2 and directed synthesis of H 2 . Nat. Rev. Chem. 4, 78–89 (2020). (PMID: 3712805010.1038/s41570-019-0158-3)
Li, M., Yang, K., Abdinejad, M., Zhao, C. & Burdyny, T. Advancing integrated CO 2 electrochemical conversion with amine-based CO 2 capture: a review. Nanoscale 14, 11892–11908 (2022). (PMID: 3593867410.1039/D2NR03310K)
Bogaerts, A. & Centi, G. Plasma technology for CO 2 conversion: a personal perspective on prospects and gaps. Front. Energy Res. https://doi.org/10.3389/fenrg.2020.00111 (2020).
Chen, T.-Y., Baker-Fales, M. & Vlachos, D. G. Operation and optimization of microwave-heated continuous-flow microfluidics. Ind. Eng. Chem. Res. 59, 10418–10427 (2020). (PMID: 10.1021/acs.iecr.0c01650)
McDonough, W. & Braungart, M. Cradle to Cradle: Remaking the Way We Make Things (North Point, 2002).
Linear and circular economies: What are they and what’s the difference? Santander (13 March 2024); https://www.santander.com/en/stories/linear-and-circular-economies-what-are-they-and-whats-the-difference .
Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, eabc3183 (2020). Explores key properties of abundant metals and discusses how to embrace these properties in the design of efficient new catalysts. (PMID: 32792370787531510.1126/science.abc3183)
Bhosekar, A. & Lerapetritou, M. A framework for supply chain optimization for modular manufacturing with production feasibility analysis. Comput. Chem. Eng. 145, 107175 (2021). (PMID: 10.1016/j.compchemeng.2020.107175)
Zimmermann, A. W. et al. Techno-economic assessment guidelines for CO 2 utilization. Front. Energy Res. https://doi.org/10.3389/fenrg.2020.00005 (2020).
NETL CO2U LCA guidance toolkit. National Engineering Technology Laboratory https://www.netl.doe.gov/LCA/CO2U (2022).
Life cycle analysis (LCA) of energy technology and pathways. National Engineering Technology Laboratory https://www.netl.doe.gov/LCA .
About energy analysis. National Engineering Technology Laboratory https://www.netl.doe.gov/EA/about .
Cost and performance baseline studies. National Energy Technology Laboratory https://www.netl.doe.gov/energyanalysis/details?id=729 .
Herron, S., Zoelle, A. & Summers, W. Cost of capturing CO2 from industrial sources report. National Energy Technology Laboratory https://www.netl.doe.gov/energy-analysis/details?id=1836 (2014).
Fe/NETL CO 2 Transport cost model and user’s manual. National Energy Technology Laboratory https://www.netl.doe.gov/energy-analysis/details?id=630 .
Quality guidelines for energy system studies (QGESS): cost estimation methnolody for NETL assessments of power plant performance. National Energy Technology Laboratory https://www.netl.doe.gov/energyanalysis/details?id=790 .
QGESS: capital cost scaling methodology. National Energy Technology Laboratory https://www.netl.doe.gov/energyanalysis/details?id=1026 .
Kabatek, P. & Zoelle, A. Cost and performance metrics used to assess carbon utilization and storage technologies. National Energy Technology Laboratory https://www.netl.doe.gov/energy-analysis/details?id=737 (2014).
Mencarelli, L., Chen, Q., Pagot, A. & Grossmann, I. E. A review on superstructure optimization approaches in process system engineering. Comput. Chem. Eng. 136, 106808 (2020). (PMID: 10.1016/j.compchemeng.2020.106808)
McNamara, W., Passell, H., Montes, M., Jeffers, R. & Gyuk, I. Seeking energy equity through energy storage. Electr. J. 35, 107063 (2022). (PMID: 10.1016/j.tej.2021.107063)
Finley-Brook, M. & Holloman, E. L. Empowering energy justice. Int. J. Environ. Res. Public Health 13, 926 (2016). (PMID: 27657101503675910.3390/ijerph13090926)
Carley, S. & Konisky, D. M. The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020). (PMID: 10.1038/s41560-020-0641-6)
Lane, H. M., Morello-Frosch, R., Marshall, J. D. & Apte, J. S. Historical redlining is associated with present-day air pollution disparities in U.S. cities. Environ. Sci. Technol. Lett. 9, 345–350 (2022). (PMID: 35434171900917410.1021/acs.estlett.1c01012)
Tarekegne, B., O’Neil, R. & Twitchell, J. Energy storage as an equity asset. Curr. Sustain. Renew. Energy Rep. 8, 149–155 (2021).
Scott, M. & Powells, G. Towards a new social science research agenda for hydrogen transitions: social practices, energy justice, and place attachment. Energy Res. Soc. Sci. 61, 101346 (2020). (PMID: 10.1016/j.erss.2019.101346)
Sovacool, B. K., Baum, C. M., Low, S., Roberts, C. & Steinhauser, J. Climate policy for a net-zero future: ten recommendations for direct air capture. Environ. Res. Lett. 17, 074014 (2022). (PMID: 10.1088/1748-9326/ac77a4)
Martenies, S. E., Akherati, A., Jathar, S. & Magzamen, S. Health and environmental justice implications of retiring two coal-fired power plants in the southern front range region of Colorado. Geohealth 3, 266–283 (2019). (PMID: 32159046700717510.1029/2019GH000206)
Clark, C. et al. Pathways to commercial liftoff: overview of societal considerations and impacts. US Department of Energy https://liftoff.energy.gov/wp-content/uploads/2023/05/20230523-Pathways-to-Commercial-Liftoff-Overview-of-Societal-Considerations-Impact.pdf (2023).
Berry, B. et al. Just by design: exploring justice as a multidimensional concept in us circular economy discourse. Local. Environ. 27, 1225–1241 (2021). (PMID: 10.1080/13549839.2021.1994535)
DeVries, T. The ocean carbon cycle. Annu. Rev. Environ. Resour. 47, 317–341 (2022).
Alghoul, M. A., Poovanaesvaran, P., Sopian, K. & Sulaiman, M. Y. Review of brackish water reverse osmosis (BWRO) system designs. Renew. Sustain. Energy Rev. 13, 2661–2667 (2009). (PMID: 10.1016/j.rser.2009.03.013)
Huo, X., Vanneste, J., Cath, T. Y. & Strathmann, T. J. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine. Water Res. 175, 115688 (2020). (PMID: 3217109510.1016/j.watres.2020.115688)
Water Science School Desalination. US Geological Survey https://www.usgs.gov/special-topics/water-science-school/science/desalination (2019).
Larsen, T. A., Riechmann, M. E. & Udert, K. M. State of the art of urine treatment technologies: a critical review. Water Res. X 13, 100114 (2021). (PMID: 34693239851792310.1016/j.wroa.2021.100114)
Zevenhoven, R. & Kilpinen, P. Control of Pollutants in Flue Gases and Fuel Gases (Helsinki University of Technology, Espoo (Finland). Laboratory of Energy Engineering and Environmental Protection, 2004).
Xu, Y. et al. Oxygen-tolerant electroproduction of C 2 products from simulated flue gas. Energy Environ. Sci. 13, 554–561 (2020). (PMID: 10.1039/C9EE03077H)
Gautam, M. et al. The effect of flue gas contaminants on electrochemical reduction Of CO 2 to methyl formate in a dual methanol/water electrolysis system. Chem. Catal. 2, 2364–2378 (2022). (PMID: 10.1016/j.checat.2022.08.001)
Ho, H.-J., Iizuka, A. & Shibata, E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies. Ind. Eng. Chem. Res. 58, 8941–8954 (2019). (PMID: 10.1021/acs.iecr.9b01213)
Tripathi, N., Hills, C. D., Singh, R. S. & Atkinson, C. J. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. npj Clim. Atmos. Sci. 2, 35 (2019). (PMID: 10.1038/s41612-019-0093-5)
Han, H. et al. Contaminants in biochar and suggested mitigation measures: a review. Chem. Eng. J. 429, 132287 (2022). (PMID: 10.1016/j.cej.2021.132287)
Food wastage footprint impacts on natural resources. Food and Agriculture Organization of the United Nations (FAO) https://www.fao.org/3/i3347e/i3347e.pdf (2013).
Milbrandt, A., Seiple, T., Heimiller, D., Skaggs, R. & Coleman, A. Wet waste-to-energy resources in the United States. Resour. Conserv. Recycl. 137, 32–47 (2018). (PMID: 10.1016/j.resconrec.2018.05.023)
Wakefield, F. Top 25 recycling facts and statistics for 2022. World Economic Forum https://www.weforum.org/agenda/2022/06/recycling-global-statistics-facts-plastic-paper/#:~:Text=1.,2 (2022).
Zweifel, H., Maier, R. D. & Schiller, M. Plastics Additives Handbook 6th edn (Hanser Publications, 2009).
Scheirs, J. & Kaminsky, W. Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels 1st edn. (Wiley, 2006).
Bailey, M. Backgrounder: methane emissions from waste. Anaergia https://www.anaergia.com/backgrounder-methane-emissions-from-waste/ (2022).
Campanelli, M. et al. Outlook for Biogas and Biomethane: Prospects for Organic Growth (International Energy Agency, 2020).
Understanding global warming potentials. US Environmental Protection Agency https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#:~:Text=CO2%2C%20by%20definition%2C%20has,will%20last%20thousands%20of%20years (2023).
Kidnay, A. J., Parrish, W. R. & McCartney, D. G. Fundamentals of Natural Gas Processing 3rd edn (CRC, 2019).
NIST chemistry WebBook. National Institute of Standards and Technology webbook.nist.gov/.
Lide, D. R. CRC Handbook of Chemistry and Physics 85th edn (CRC, 2004).
Gaggioli, C. A., Stoneburner, S. J., Cramer, C. J. & Gagliardi, L. Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal. 9, 8481–8502 (2019). (PMID: 10.1021/acscatal.9b01775)
Rosen, A. S., Notestein, J. M. & Snurr, R. Q. Structure–activity relationships that identify metal–organic framework catalysts for methane activation. ACS Catal. 9, 3576–3587 (2019). (PMID: 10.1021/acscatal.8b05178)
Vitillo, J. G., Lu, C. C., Cramer, C. J., Bhan, A. & Gagliardi, L. Influence of first and second coordination environment on structural Fe(II) sites in MIL-101 for C–H bond activation in methane. ACS Catal. 11, 579–589 (2020). (PMID: 10.1021/acscatal.0c03906)
Bernales, V., Ortuño, M. A., Truhlar, D. G., Cramer, C. J. & Gagliardi, L. Computational design of functionalized metal–organic framework nodes for catalysis. ACS Cent. Sci. 4, 5–19 (2018). (PMID: 2939217210.1021/acscentsci.7b00500)
Raugei, S. et al. Toward molecular catalysts by computer. Acc. Chem. Res. 48, 248–255 (2015). (PMID: 2557485410.1021/ar500342g)
Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). (PMID: 2137879910.1038/nchem.121)
Vorotnikov, V. & Vlachos, D. G. Group additivity and modified linear scaling relations for estimating surface thermochemistry on transition metal surfaces: application to furanics. J. Phys. Chem. C 119, 10417–10426 (2015). (PMID: 10.1021/acs.jpcc.5b01696)
Wang, Y., Chen, T. Y. & Vlachos, D. G. NEXTorch: a design and Bayesian optimization toolkit for chemical sciences and engineering. J. Chem. Inf. Model. 61, 5312–5319 (2021). (PMID: 3469480510.1021/acs.jcim.1c00637)
Batchu, S. P. et al. Accelerating manufacturing for biomass conversion via integrated process and bench digitalization: a perspective. React. Chem. Eng. 7, 813–832 (2022). (PMID: 10.1039/D1RE00560J)
Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023). (PMID: 3753281110.1038/s41586-023-06221-2)
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). (PMID: 26978244479217510.1038/sdata.2016.18)
Guo, J. et al. Automated chemical reaction extraction from scientific literature. J. Chem. Inf. Model. 62, 2035–2045 (2022). Use of chemical data from already existing scientific literature to afford access to the vast store of catalysis information that has not been stored in accordance with FAIR data principles. (PMID: 3411593710.1021/acs.jcim.1c00284)
Report for the ASCR Workshop on the Management and Storage of Scientific Data (US Department of Energy, 2022).
Implementing FAIR data for people and machines: impacts and implications. National Academies https://www.nationalacademies.org/our-work/implementing-fair-data-for-people-and-machines-impacts-and-implications (2019).
Byna, S. et al. Report for the ASCR Workshop on the Management and Storage of Scientific Data. (US Department of Energy, 2022); https://doi.org/10.2172/1845707 .
FAIR research data management: basics for chemists. NFDI4Chem https://www.nfdi4chem.de/a-workshop-for-institutions-fair-research-data-management-basics-for-chemists/ (2022).
International FAIR convergence symposium. Committee on Data International Science Council https://codata.org/events/conferences/fair-convergence-symposium-2022/ (2022).
Addressing rigor and reproducibility in heterogeneous, thermal catalysis. NSF and DOE Sponsored Workshop https://www.scholars.northwestern.edu/en/projects/addressing-rigor-and-reproducibility-in-heterogeneous-thermal-cat-3 (2022).
Catalysis hub. SUNCAT Center for Interface Science and Catalysis https://www.catalysis-hub.org/ (2019).
Repository for samples, reactions and related research data. Chemotion Repository https://www.chemotion-repository.net/welcome (2020).
COD open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers. Crystallography Open Database https://www.crystallography.net/cod/ (2004).
EELS data base: inner and outer shell excitation spectrum repository. Electron Energy Loss Spectroscopy Data Base https://eelsdb.eu/ (2016).
ioChem-BD - The computational chemistry results repository. ioChem-BD https://www.iochem-bd.org (2015).
Mass spectrometry interactive virtual environment. Center for Computational Mass Spectrometry https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp (2020).
Yu, X. Y. et al. Mesoscopic structure facilitates rapid CO 2 transport and reactivity in CO 2 capture solvents. J. Phys. Chem. Lett. 9, 5765–5771 (2018). (PMID: 3020567910.1021/acs.jpclett.8b02231)
تواريخ الأحداث: Date Created: 20240501 Latest Revision: 20240513
رمز التحديث: 20240514
DOI: 10.1038/s41570-024-00587-1
PMID: 38693313
قاعدة البيانات: MEDLINE
الوصف
تدمد:2397-3358
DOI:10.1038/s41570-024-00587-1