دورية أكاديمية

Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803.

التفاصيل البيبلوغرافية
العنوان: Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803.
المؤلفون: Ortega-Martínez P; Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain.; Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain., Nikkanen L; Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland., Wey LT; Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland., Florencio FJ; Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain.; Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain., Allahverdiyeva Y; Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland., Díaz-Troya S; Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain.; Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain.
المصدر: The New phytologist [New Phytol] 2024 Jul; Vol. 243 (1), pp. 162-179. Date of Electronic Publication: 2024 May 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Synechocystis*/metabolism , Synechocystis*/drug effects , Synechocystis*/growth & development , Synechocystis*/genetics , Glycogen*/metabolism , Photosynthesis* , Photosystem II Protein Complex*/metabolism, Electron Transport ; Mutation/genetics ; Glucose/metabolism ; Carbon Dioxide/metabolism ; Oxygen/metabolism ; Glucose-1-Phosphate Adenylyltransferase/metabolism ; Glucose-1-Phosphate Adenylyltransferase/genetics ; Phosphoglucomutase/metabolism ; Phosphoglucomutase/genetics
مستخلص: Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO 2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O 2 evolution and CO 2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.
(© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
References: Baikie TK, Wey LT, Lawrence JM, Medipally H, Reisner E, Nowaczyk MM, Friend RH, Howe CJ, Schnedermann C, Rao A et al. 2023. Photosynthesis re‐wired on the pico‐second timescale. Nature 615: 836–840.
Ball SG, Morell MK. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology 54: 207–233.
Beckmann K, Messinger J, Badger MR, Wydrzynski T, Hillier W. 2009. On‐line mass spectrometry: membrane inlet sampling. Photosynthesis Research 102: 511–522.
Berthomieu C, Hienerwadel R. 2001. Iron coordination in photosystem II: interaction between bicarbonate and the QB pocket studied by Fourier transform infrared spectroscopy. Biochemistry 40: 4044–4052.
Brinkert K, De Causmaecker S, Krieger‐Liszkay A, Fantuzzi A, Rutherford AW. 2016. Bicarbonate‐induced redox tuning in Photosystem II for regulation and protection. Proceedings of the National Academy of Sciences, USA 113: 12144–12149.
Burnap RL, Hagemann M, Kaplan A. 2015. Regulation of CO2 concentrating mechanism in cyanobacteria. Life 5: 348–371.
Cano M, Holland SC, Artier J, Burnap RL, Ghirardi M, Morgan JA, Yu J. 2018. Glycogen synthesis and metabolite overflow contribute to energy balancing in cyanobacteria. Cell Reports 23: 667–672.
Carrieri D, Paddock T, Maness PC, Seibert M, Yu J. 2012. Photo‐catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage. Energy and Environmental Science 5: 9457–9461.
Cifuente JO, Comino N, Trastoy B, D'Angelo C, Guerin ME. 2019. Structural basis of glycogen metabolism in bacteria. Biochemical Journal 476: 2059–2092.
Díaz‐Troya S, López‐Maury L, Sánchez‐Riego AM, Roldán M, Florencio FJ. 2014. Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: analysis of the AGP and glycogen synthases. Molecular Plant 7: 87–100.
Doello S, Neumann N, Forchhammer K. 2022. Regulatory phosphorylation event of phosphoglucomutase 1 tunes its activity to regulate glycogen metabolism. FEBS Journal 289: 6005–6020.
Fantuzzi A, Haniewicz P, Farci D, Loi MC, Park K, Büchel C, Bochtler M, Rutherford AW, Piano D. 2023. Bicarbonate activation of the monomeric photosystem II‐PsbS/Psb27 complex. Plant Physiology 192: 2656–2671.
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.
Fufezan C, Gross CM, Sjödin M, Rutherford AW, Krieger‐Liszkay A, Kirilovsky D. 2007. Influence of the redox potential of the primary quinone electron acceptor on photoinhibition in photosystem II. Journal of Biological Chemistry 282: 12492–12502.
Gründel M, Scheunemann R, Lockau W, Zilliges Y. 2012. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158: 3032–3043.
Haimovich‐Dayan M, Kahlon S, Hihara Y, Hagemann M, Ogawa T, Ohad I, Lieman‐Hurwitz J, Kaplan A. 2011. Cross‐talk between photomixotrophic growth and CO2‐concentrating mechanism in Synechocystis sp. strain PCC 6803. Environmental Microbiology 13: 1767–1777.
Heifetz PB, Fö B, Osmond CB, Giles LJ, Boynton JE. 2000. Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses 1. Plant Physiology 122: 1439–1445.
Ishikita H, Galstyan A, Knapp EW. 2007. Redox potential of the non‐heme iron complex in bacterial photosynthetic reaction center. Biochimica et Biophysica Acta – Bioenergetics 1767: 1300–1309.
Johnson VM, Pakrasi HB. 2022. Advances in the understanding of the lifecycle of photosystem II. Microorganisms 10: 1–19.
Kahlon S, Beeri K, Ohkawa H, Hihara Y, Murik O, Suzuki I, Ogawa T, Kaplan A. 2006. A putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose. Microbiology 152: 647–655.
Kanno M, Carroll AL, Atsumi S. 2017. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nature Communications 8: 14724.
Latifi A, Ruiz M, Zhang CC. 2009. Oxidative stress in cyanobacteria. FEMS Microbiology Reviews 33: 258–278.
Lea‐Smith DJ, Bombelli P, Vasudevan R, Howe CJ. 2016. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1857: 247–255.
Lee HW, Park BS, Joo JH, Patidar SK, Choi HJ, Jin ES, Han MS. 2018. Cyanobacteria‐specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2‐0. Scientific Reports 8: 11595.
Lee S, Ryu JY, Soo YK, Jeon JH, Ji YS, Cho HT, Choi SB, Choi D, De Marsac NT, Il PY. 2007. Transcriptional regulation of the respiratory genes in the cyanobacterium Synechocystis sp. PCC 6803 during the early response to glucose feeding. Plant Physiology 145: 1018–1030.
Luan G, Zhang S, Wang M, Lu X. 2019. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnology Advances 37: 771–786.
Makowka A, Nichelmann L, Schulze D, Spengler K, Wittmann C, Forchhammer K, Gutekunst K. 2020. Glycolytic shunts replenish the Calvin–Benson–Bassham cycle as anaplerotic reactions in cyanobacteria. Molecular Plant 13: 471–482.
Mallen‐Ponce MJ, María Esther Perez‐Perez MP, Crespo JL. 2022. Photosynthetic assimilation of CO2 regulates TOR activity. Proceedings of the National Academy of Sciences, USA 119: e2115261119.
Markwell MAK, Haas SM, Bieber LL, Tolbert NE. 1978. A modification of the lowry procedure to simplify protein determination in membrane and lipoprotein sample. Analytical Biochemistry 87: 206–210.
Matson MM, Atsumi S. 2018. Photomixotrophic chemical production in cyanobacteria. Current Opinion in Biotechnology 50: 65–71.
Miller NT, Ajlani G, Burnap RL. 2022. Cyclic electron flow‐coupled proton pumping in Synechocystis sp. PCC6803 is dependent upon NADPH oxidation by the soluble isoform of Ferredoxin:NADP‐Oxidoreductase. Microorganisms 10: 855.
Mullineaux CW. 2014. Co‐existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1837: 503–511.
Muñoz‐Marín MDC, López‐Lozano A, Moreno‐Cabezuelo JÁ, Díez J, García‐Fernández JM. 2024. Mixotrophy in cyanobacteria. Current Opinion in Microbiology 78: 102432.
Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. 2007. Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA) –Bioenergetics 1767: 414–421.
Muth‐Pawlak D, Kreula S, Gollan PJ, Huokko T, Allahverdiyeva Y, Aro EM. 2022. Patterning of the autotrophic, mixotrophic, and heterotrophic proteomes of oxygen‐evolving cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology 13: 891895.
Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H. 2014. Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant and Cell Physiology 55: 1606–1612.
Nikkanen L, Santana Sánchez A, Ermakova M, Rögner M, Cournac L, Allahverdiyeva Y. 2020. Functional redundancy between flavodiiron proteins and NDH‐1 in Synechocystis sp. PCC 6803. The Plant Journal 103: 1460–1476.
Nikkanen L, Solymosi D, Jokel M, Allahverdiyeva Y. 2021. Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: recent advances and biotechnological prospects. Physiologia Plantarum 173: 514–525.
Ogawa T, Sonoike K. 2016. Effects of bleaching by nitrogen deficiency on the quantum yield of Photosystem II in Synechocystis sp. PCC 6803 revealed by Chl fluorescence measurements. Plant and Cell Physiology 57: 558–567.
Ogawa T, Suzuki K, Sonoike K. 2021. Respiration interacts with photosynthesis through the acceptor side of photosystem I, reflected in the dark‐to‐light induction kinetics of chlorophyll fluorescence in the cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Plant Science 12: 717968.
Ortega‐Martínez P, Roldán M, Díaz‐Troya S, Florencio FJ. 2023. Stress response requires an efficient connection between glycogen and central carbon metabolism by phosphoglucomutases in cyanobacteria. Journal of Experimental Botany 74: 1532–1550.
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111: 1–61.
Roach T, Sedoud A, Krieger‐Liszkay A. 2013. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. Biochimica et Biophysica Acta – Bioenergetics 1827: 1183–1190.
Rodríguez‐Gil T, Torrado A, Iniesta‐Pallarés M, Álvarez C, Mariscal V, Molina‐Heredia FP. 2021. Cytochrome cM is probably a membrane protein similar to the C subunit of the bacterial nitric oxide reductase. Applied Sciences 11: 9396.
Schreiber U, Klughammer C. 2016. Analysis of photosystem I donor and acceptor sides with a new type of online‐deconvoluting kinetic LED‐array spectrophotometer. Plant and Cell Physiology 57: 1454–1467.
Schuller JM, Birrell JA, Tanaka H, Konuma T, Wulfhorst H, Cox N, Schuller SK, Thiemann J, Lubitz W, Sétif P et al. 2019. Structural adaptations of photosynthetic complex I enable ferredoxin‐dependent electron transfer. Science 363: 257–260.
Schulze D, Kohlstedt M, Becker J, Cahoreau E, Peyriga L, Makowka A, Hildebrandt S, Gutekunst K, Portais JC, Wittmann C. 2022. GC/MS‐based 13C metabolic flux analysis resolves the parallel and cyclic photomixotrophic metabolism of Synechocystis sp. PCC 6803 and selected deletion mutants including the Entner‐Doudoroff and phosphoketolase pathways. Microbial Cell Factories 21: 69.
Shevela D, Klimov V, Messinger J. 2007. Interactions of photosystem II with bicarbonate, formate and acetate. Photosynthesis Research 94: 247–264.
Shi LX, Hall M, Funk C, Schröder WP. 2012. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochimica et Biophysica Acta – Bioenergetics 1817: 13–25.
Solymosi D, Nikkanen L, Muth‐Pawlak D, Fitzpatrick D, Vasudevan R, Howe CJ, Lea‐Smith DJ, Allahverdiyeva Y. 2020. Cytochrome CM decreases photosynthesis under photomixotrophy in Synechocystis sp. PCC 6803. Plant Physiology 183: 700–716.
Solymosi D, Shevela D, Allahverdiyeva Y. 2022. Nitric oxide represses photosystem II and NDH‐1 in the cyanobacterium Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta – Bioenergetics (BBA) 1863: 148507.
Sun Z, Zhao X, Li G, Yang J, Chen Y, Xia M, Hwang I, Hou H. 2023. Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498). New Phytologist 238: 1386–1402.
Theune ML, Hildebrandt S, Steffen‐Heins A, Bilger W, Gutekunst K, Appel J. 2021. In‐vivo quantification of electron flow through photosystem I – cyclic electron transport makes up about 35% in a cyanobacterium. Biochimica et Biophysica Acta – Bioenergetics 1862: 148353.
Thiel K, Vuorio E, Aro EM, Kallio PT. 2017. The effect of enhanced acetate influx on Synechocystis sp. PCC 6803 metabolism. Microbial Cell Factories 16: 21.
Trautmann D, Voß B, Wilde A, Al‐Babili S, Hess WR. 2012. Microevolution in cyanobacteria: re‐sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Research 19: 435–448.
Vass I, Kirilovsky D, Etienne AL. 1999. UV‐B radiation‐induced donor‐ and acceptor‐side modifications of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 38: 12786–12794.
Wan N, Abernathy M, Tang JKH, Tang YJ, You L. 2015. Cyanobacterial photo‐driven mixotrophic metabolism and its advantages for biosynthesis. Frontiers of Chemical Science and Engineering 9: 308–316.
Wang Y, Chen X, Spengler K, Terberger K, Boehm M, Appel J, Barske T, Timm S, Battchikova N, Hagemann M et al. 2022. Pyruvate : ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria. eLife 11: e71339.
Wydrzynski T, Govindjee. 1975. A new site of bicarbonate effect in photosystem II of photosynthesis: evidence from chlorophyll fluorescence transients in spinach chloroplasts. Biochimica et Biophysica Acta 387: 403–408.
Yamada M, Nagao R, Iwai M, Arai Y, Makita A, Ohta H, Tomo T. 2018. The PsbQ′ protein affects the redox potential of the QA in photosystem II. Photosynthetica 56: 185–191.
Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H. 2013. Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnology Journal 8: 571–580.
Zavřel T, Očenášová P, Červený J. 2017. Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS ONE 12: e0189130.
معلومات مُعتمدة: BIO-284 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía; European Molecular Biology Organization; NNF20OC0064371 Novo Nordisk Fonden; FPU18/06580 Ministerio de Universidades; PID2019-104513GB-I00 Ministerio de Ciencia, Innovación y Universidades; 82845 NordForsk
فهرسة مساهمة: Keywords: cyanobacteria; glucose; glycogen; metabolism; mixotrophy; photomixotrophy; photosynthesis
المشرفين على المادة: 9005-79-2 (Glycogen)
0 (Photosystem II Protein Complex)
IY9XDZ35W2 (Glucose)
142M471B3J (Carbon Dioxide)
S88TT14065 (Oxygen)
EC 2.7.7.27 (Glucose-1-Phosphate Adenylyltransferase)
EC 5.4.2.2 (Phosphoglucomutase)
تواريخ الأحداث: Date Created: 20240506 Date Completed: 20240606 Latest Revision: 20240606
رمز التحديث: 20240606
DOI: 10.1111/nph.19793
PMID: 38706429
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8137
DOI:10.1111/nph.19793