دورية أكاديمية

Nonequivalent Atomic Vibrations at Interfaces in a Polar Superlattice.

التفاصيل البيبلوغرافية
العنوان: Nonequivalent Atomic Vibrations at Interfaces in a Polar Superlattice.
المؤلفون: Hoglund ER; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.; Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA., Walker HA; Department of Physics and, Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA., Hussain K; Department of Electrical Engineering, University of South Carolina, Columbia, SC, 29208, USA., Bao DL; Department of Physics and, Astronomy, Vanderbilt University, Nashville, TN, 37235, USA., Ni H; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA.; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA., Mamun A; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA., Baxter J; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA., Caldwell JD; Department of Mechanical Engineering and Electrical Engineering, Vanderbilt University, Nashville, TN, 37235, USA., Khan A; Department of Electrical Engineering, University of South Carolina, Columbia, SC, 29208, USA., Pantelides ST; Department of Physics and, Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA.; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA., Hopkins PE; Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.; Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA.; Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA., Hachtel JA; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
المصدر: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Aug; Vol. 36 (33), pp. e2402925. Date of Electronic Publication: 2024 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9885358 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4095 (Electronic) Linking ISSN: 09359648 NLM ISO Abbreviation: Adv Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
مستخلص: In heterostructures made from polar materials, e.g., AlN-GaN-AlN, the nonequivalence of the two interfaces is long recognized as a critical aspect of their electronic properties; in that, they host different 2D carrier gases. Interfaces play an important role in the vibrational properties of materials, where interface states enhance thermal conductivity and can generate unique infrared-optical activity. The nonequivalence of the corresponding interface atomic vibrations, however, is not investigated so far due to a lack of experimental techniques with both high spatial and high spectral resolution. Herein, the nonequivalence of AlN-(Al 0.65 Ga 0.35 )N and (Al 0.65 Ga 0.35 )N-AlN interface vibrations is experimentally demonstrated using monochromated electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-EELS) and density-functional-theory (DFT) calculations are employed to gain insights in the physical origins of observations. It is demonstrated that STEM-EELS possesses sensitivity to the displacement vector of the vibrational modes as well as the frequency, which is as critical to understanding vibrations as polarization in optical spectroscopies. The combination enables direct mapping of the nonequivalent interface phonons between materials with different phonon polarizations. The results demonstrate the capacity to carefully assess the vibrational properties of complex heterostructures where interface states dominate the functional properties.
(© 2024 Wiley‐VCH GmbH.)
References: H. Kroemer, Rev. Mod. Phys. 2001, 73, 783.
Y. Z. Chen, F. Trier, T. Wijnands, R. J. Green, N. Gauquelin, R. Egoavil, D. V. Christensen, G. Koster, M. Huijben, N. Bovet, S. Macke, F. He, R. Sutarto, N. H. Andersen, J. A. Sulpizio, M. Honig, G. E. D. K. Prawiroatmodjo, T. S. Jespersen, S. Linderoth, S. Ilani, J. Verbeeck, G. Van Tendeloo, G. Rijnders, G. A. Sawatzky, N. Pryds, Nat. Mater. 2015, 14, 801.
R. Dingle, H. L. Störmer, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 1978, 33, 665.
W. A. Harrison, E. A. Kraut, J. R. Waldrop, R. W. Grant, Phys. Rev. B 1978, 18, 4402.
C. Domínguez, A. B. Georgescu, B. Mundet, Y. Zhang, J. Fowlie, A. Mercy, A. Waelchli, S. Catalano, D. T. L. Alexander, P. Ghosez, A. Georges, A. J. Millis, M. Gibert, J.‐M. Triscone, Nat. Mater. 2020, 19, 1182.
J. Hwang, J. Son, J. Y. Zhang, A. Janotti, C. G. Van de Walle, S. Stemmer, Phys. Rev. B 2013, 87, 060101.
J. Ravichandran, A. K. Yadav, R. Cheaito, P. B. Rossen, A. Soukiassian, S. J. Suresha, J. C. Duda, B. M. Foley, C.‐H. Lee, Y. Zhu, A. W. Lichtenberger, J. E. Moore, D. A. Muller, D. G. Schlom, P. E. Hopkins, A. Majumdar, R. Ramesh, M. A. Zurbuchen, Nat. Mater. 2014, 13, 168.
E. R. Hoglund, D.‐L. Bao, A. O'Hara, S. Makarem, Z. T. Piontkowski, J. R. Matson, A. K. Yadav, R. C. Haislmaier, R. Engel‐Herbert, J. F. Ihlefeld, J. Ravichandran, R. Ramesh, J. D. Caldwell, T. E. Beechem, J. A. Tomko, J. A. Hachtel, S. T. Pantelides, P. E. Hopkins, J. M. Howe, Nature 2022, 601, 556.
Z. Cheng, R. Li, X. Yan, G. Jernigan, J. Shi, M. E. Liao, N. J. Hines, C. A. Gadre, J. C. Idrobo, E. Lee, K. D. Hobart, M. S. Goorsky, X. Pan, T. Luo, S. Graham, Nat. Commun. 2021, 12, 6901.
X. Tian, X. Yan, G. Varnavides, Y. Yuan, D. S. Kim, C. J. Ciccarino, P. Anikeeva, M.‐Y. Li, L.‐J. Li, P. Narang, X. Pan, J. Miao, Sci. Adv. 2021, 7, eabi6699.
D. C. Ratchford, C. J. Winta, I. Chatzakis, C. T. Ellis, N. C. Passler, J. Winterstein, P. Dev, I. Razdolski, J. R. Matson, J. R. Nolen, J. G. Tischler, I. Vurgaftman, M. B. Katz, N. Nepal, M. T. Hardy, J. A. Hachtel, J.‐C. Idrobo, T. L. Reinecke, A. J. Giles, D. S. Katzer, N. D. Bassim, R. M. Stroud, M. Wolf, A. Paarmann, J. D. Caldwell, ACS Nano 2019, 13, 6730.
J. Gleize, M. A. Renucci, J. Frandon, F. Demangeot, Phys. Rev. B 1999, 60, 15985.
T. Feng, B. Qiu, X. Ruan, J. Appl. Phys. 2015, 117, 195102.
M. Maldovan, Nat. Mater. 2015, 14, 667.
Y. Luo, X. Yang, T. Feng, J. Wang, X. Ruan, Nat. Commun. 2020, 11, 2554.
H. Wei, Y. Hu, H. Bao, Commun. Mater. 2023, 4, 3.
H. Zhu, J. Yi, M.‐Y. Li, J. Xiao, L. Zhang, C.‐W. Yang, R. A. Kaindl, L.‐J. Li, Y. Wang, X. Zhang, Science 2018, 359, 579.
H. Ueda, M. García‐Fernández, S. Agrestini, C. P. Romao, J. Van Den Brink, N. A. Spaldin, K.‐J. Zhou, U. Staub, Nature 2023, 618, 946.
K. Ishito, H. Mao, Y. Kousaka, Y. Togawa, S. Iwasaki, T. Zhang, S. Murakami, J. Kishine, T. Satoh, Nat. Phys. 2023, 19, 35.
L. Zhang, Q. Niu, Phys. Rev. Lett. 2015, 115, 115502.
Y. Pan, F. Caruso, Nano Lett. 2023, 23, 7463.
H. Chen, W. Wu, J. Zhu, Z. Yang, W. Gong, W. Gao, S. A. Yang, L. Zhang, Nano Lett. 2022, 22, 1688.
H. Chen, W. Wu, S. A. Yang, X. Li, L. Zhang, Phys. Rev. B 2019, 100, 094303.
H. Wang, Y. Xiong, H. Padma, Y. Wang, Z. Wang, R. Claes, G. Brunin, L. Min, R. Zu, M. T. Wetherington, Y. Wang, Z. Mao, G. Hautier, L.‐Q. Chen, I. Dabo, V. Gopalan, Nat. Commun. 2023, 14, 5769.
M.‐L. Lin, Y. Zhou, J.‐B. Wu, X. Cong, X.‐L. Liu, J. Zhang, H. Li, W. Yao, P.‐H. Tan, Nat. Commun. 2019, 10, 2419.
O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, J. Appl. Phys. 1999, 85, 3222.
X. Wang, R. Yu, C. Jiang, W. Hu, W. Wu, Y. Ding, W. Peng, S. Li, Z. L. Wang, Adv. Mater. 2016, 28, 7234.
A. Bykhovski, B. Gelmont, M. Shur, J. Appl. Phys. 1993, 74, 6734.
A. Polman, M. Kociak, F. J. García de Abajo, Nat. Mater. 2019, 18, 1158.
O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter, P. Rez, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos, R. F. Egerton, P. A. Crozier, Nature 2014, 514, 209.
M. J. Lagos, I. C. Bicket, S. S. Mousavi M, G. A. Botton, Microscopy 2022, 71, i174.
K. Venkatraman, B. D. A. Levin, K. March, P. Rez, P. A. Crozier, Nat. Phys. 2019, 15, 1237.
F. S. Hage, G. Radtke, D. M. Kepaptsoglou, M. Lazzeri, Q. M. Ramasse, Science 2020, 367, 1124.
H. Lourenço‐Martins, M. Kociak, Phys. Rev. X 2017, 7, 041059.
M. Xu, D.‐L. Bao, A. Li, M. Gao, D. Meng, A. Li, S. Du, G. Su, S. J. Pennycook, S. T. Pantelides, W. Zhou, Nat. Mater. 2023, 22, 612.
E. R. Hoglund, D. Bao, A. O'Hara, T. W. Pfeifer, M. S. B. Hoque, S. Makarem, J. M. Howe, S. T. Pantelides, P. E. Hopkins, J. A. Hachtel, Adv. Mater. 2023, 35, 2208920.
R. Senga, Y.‐C. Lin, S. Morishita, R. Kato, T. Yamada, M. Hasegawa, K. Suenaga, Nature 2022, 603, 68.
X. Yan, C. Liu, C. A. Gadre, L. Gu, T. Aoki, T. C. Lovejoy, N. Dellby, O. L. Krivanek, D. G. Schlom, R. Wu, X. Pan, Nature 2021, 589, 65.
R. Qi, R. Shi, Y. Li, Y. Sun, M. Wu, N. Li, J. Du, K. Liu, C. Chen, J. Chen, F. Wang, D. Yu, E.‐G. Wang, P. Gao, Nature 2021, 599, 399.
B. Haas, T. M. Boland, C. Elsässer, A. K. Singh, K. March, J. Barthel, C. T. Koch, P. Rez, Nano Lett. 2023, 23, 5975.
C. A. Gadre, X. Yan, Q. Song, J. Li, L. Gu, H. Huyan, T. Aoki, S.‐W. Lee, G. Chen, R. Wu, X. Pan, Nature 2022, 606, 292.
M. Wu, R. Shi, R. Qi, Y. Li, T. Feng, B. Liu, J. Yan, X. Li, Z. Liu, T. Wang, T. Wei, Z. Liu, J. Du, J. Chen, P. Gao, Chin. Phys. Lett. 2023, 40, 036801.
K. Venkatraman, P. A. Crozier, Microsc. Microanal. 2021, 27, 1069.
F. S. Hage, R. J. Nicholls, J. R. Yates, D. G. McCulloch, T. C. Lovejoy, N. Dellby, O. L. Krivanek, K. Refson, Q. M. Ramasse, Sci. Adv. 2018, 4, 7495.
P. M. Zeiger, J. Rusz, Phys. Rev. B 2021, 104, 104301.
L. Qin, Y. Duan, H. Shi, L. Shi, G. Tang, J. Phys.: Condens. Matter 2013, 25, 045801.
X. Yan, P. M. Zeiger, Y. Huang, H. Sun, J. Li, C. A. Gadre, H. Yang, R. He, T. Aoki, Z. Zhong, Y. Nie, R. Wu, X. Pan, 2023, https://doi.org/10.48550/arXiv.2312.01694.
C. Dwyer, T. Aoki, P. Rez, S. L. Y. Chang, T. C. Lovejoy, O. L. Krivanek, Phys. Rev. Lett. 2016, 117, 256101.
A. Giri, P. E. Hopkins, Adv Funct Mater 2020, 30, 1903857.
T. Feng, Y. Zhong, J. Shi, X. Ruan, Phys. Rev. B 2019, 99, 045301.
J. Zweck, F. Schwarzhuber, S. Pöllath, K. Müller‐Caspary, Ultramicroscopy 2023, 250, 113752.
J. Hafner, M. Krajci, J. Phys.: Condens. Matter 1993, 5, 2489.
S. Pailhès, H. Euchner, V. M. Giordano, R. Debord, A. Assy, S. Gomès, A. Bosak, D. Machon, S. Paschen, M. De Boissieu, Phys. Rev. Lett. 2014, 113, 025506.
S. Christensen, L. Bjerg, A. Kaltzoglou, F. Juranyi, T. Fässler, T. Unruh, M. Christensen, J. Appl. Phys. 2013, 113, 084902.
معلومات مُعتمدة: N00014-23-1-2630 Office of Naval Research; N00014-18-1-2429 Office of Naval Research; DE-AC02-05CH11231 U.S. Department of Energy; DE-AC05-00OR22725 Office of Science; ERKCS89 Basic Energy Sciences; DE-AC05-00OR22725 Basic Energy Sciences; DE-FG02-09ER46554 Basic Energy Sciences; DE-AC02-05CH11231 Basic Energy Sciences; ERKCZ55-KC040304 Basic Energy Sciences
فهرسة مساهمة: Keywords: interface vibrations; monochromated electron energy‐loss spectroscopy; phonon; scanning transmission electron microscopy; wide bandgap
تواريخ الأحداث: Date Created: 20240508 Latest Revision: 20240815
رمز التحديث: 20240815
DOI: 10.1002/adma.202402925
PMID: 38717326
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4095
DOI:10.1002/adma.202402925