دورية أكاديمية

Region specific anisotropy and rate dependence of Göttingen minipig brain tissue.

التفاصيل البيبلوغرافية
العنوان: Region specific anisotropy and rate dependence of Göttingen minipig brain tissue.
المؤلفون: Boiczyk GM; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA. gregboiczyk@gmail.com., Pearson N; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA., Kote VB; Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA., Sundaramurthy A; Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA., Subramaniam DR; Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA., Rubio JE; Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA., Unnikrishnan G; Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA.; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA., Reifman J; Telemedicine and Advanced Technology Research Center, Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Development Command, Fort Detrick, MD, USA., Monson KL; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.; Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA.
المصدر: Biomechanics and modeling in mechanobiology [Biomech Model Mechanobiol] 2024 May 08. Date of Electronic Publication: 2024 May 08.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101135325 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1617-7940 (Electronic) Linking ISSN: 16177940 NLM ISO Abbreviation: Biomech Model Mechanobiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, c2002-
مستخلص: Traumatic brain injury is a major cause of morbidity in civilian as well as military populations. Computational simulations of injurious events are an important tool to understanding the biomechanics of brain injury and evaluating injury criteria and safety measures. However, these computational models are highly dependent on the material parameters used to represent the brain tissue. Reported material properties of tissue from the cerebrum and cerebellum remain poorly defined at high rates and with respect to anisotropy. In this work, brain tissue from the cerebrum and cerebellum of male Göttingen minipigs was tested in one of three directions relative to axon fibers in oscillatory simple shear over a large range of strain rates from 0.025 to 250 s -1 . Brain tissue showed significant direction dependence in both regions, each with a single preferred loading direction. The tissue also showed strong rate dependence over the full range of rates considered. Transversely isotropic hyper-viscoelastic constitutive models were fit to experimental data using dynamic inverse finite element models to account for wave propagation observed at high strain rates. The fit constitutive models predicted the response in all directions well at rates below 100 s -1 , after which they adequately predicted the initial two loading cycles, with the exception of the 250 s -1 rate, where models performed poorly. These constitutive models can be readily implemented in finite element packages and are suitable for simulation of both conventional and blast injury in porcine, especially Göttingen minipig, models.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Arbogast KB, Margulies SS (1998) Material characterization of the brainstem from oscillatory shear tests. J Biomech 31:801–807. https://doi.org/10.1016/s0021-9290(98)00068-2. (PMID: 10.1016/s0021-9290(98)00068-2)
Bell ED, Converse M, Mao H, Unnikrishnan G, Reifman J, Monson KL (2018) Material properties of rat middle cerebral arteries at high strain rates. J Biomech Eng. https://doi.org/10.1115/1.4039625. (PMID: 10.1115/1.4039625)
Bilston L, Liu Z, Phan-Thien N (1997) Linear viscoelastic properties of bovine brain tissue in shear. Biorheology 34:377–385. https://doi.org/10.1016/s0006-355x(98)00022-5. (PMID: 10.1016/s0006-355x(98)00022-5)
Bilston L, Liu Z, Phan-Thien N (2001) Large strain behaviour of brain tissue in shear: Some experimental data and differential constitutive model. Biorheology 38:335–345.
Boiczyk GM et al (2023) Rate- and region-dependent mechanical properties of gottingen minipig brain tissue in simple shear and unconfined compression. J Biomech Eng. https://doi.org/10.1115/1.4056480. (PMID: 10.1115/1.4056480)
Brands DW, Bovendeerd PH, Wismans JS (2002) On the potential importance of non-linear viscoelastic material modelling for numerical prediction of brain tissue response: test and application. Stapp Car Crash J 46:103–121. https://doi.org/10.4271/2002-22-0006. (PMID: 10.4271/2002-22-0006)
Brands DW, Bovendeerd PH, Peters GW (2000) Finite shear behavior of brain tissue under impact loading. Paper presented at the ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA,.
Budday S et al (2017a) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340. https://doi.org/10.1016/j.actbio.2016.10.036. (PMID: 10.1016/j.actbio.2016.10.036)
Budday S, Sommer G, Haybaeck J, Steinmann P, Holzapfel GA, Kuhl E (2017b) Rheological characterization of human brain tissue. Acta Biomater 60:315–329. https://doi.org/10.1016/j.actbio.2017.06.024. (PMID: 10.1016/j.actbio.2017.06.024)
Budde MD, Annese J (2013) Quantification of anisotropy and fiber orientation in human brain histological sections. Front Integr Neurosci 7:3. https://doi.org/10.3389/fnint.2013.00003. (PMID: 10.3389/fnint.2013.00003)
Centers for Disease Control and Prevention (2023) Traumatic brain injury & concussion. https://www.cdc.gov/traumaticbraininjury/get_the_facts.html . Accessed 10 Oct 2023.
Chatelin S, Vappou J, Roth S, Raul JS, Willinger R (2012) Towards child versus adult brain mechanical properties. J Mech Behav Biomed Mater 6:166–173. https://doi.org/10.1016/j.jmbbm.2011.09.013. (PMID: 10.1016/j.jmbbm.2011.09.013)
Darvish KK, Crandall JR (2001) Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med Eng Phys 23:633–645. https://doi.org/10.1016/s1350-4533(01)00101-1. (PMID: 10.1016/s1350-4533(01)00101-1)
D'Errico J (2022) fminsearchbnd, fminsearchcon. Mathworks. https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon . Accessed September 15 2021 2021.
Dixit P, Liu GR (2016) A review on recent development of finite element models for head injury simulations. Arch Comput Methods Eng 24:979–1031. (PMID: 10.1007/s11831-016-9196-x)
Donnelly BR, Medige J (1997) Shear properties of human brain tissue. J Biomech Eng 119:423–432. https://doi.org/10.1115/1.2798289. (PMID: 10.1115/1.2798289)
Felfelian AM, Baradaran Najar A, Jafari Nedoushan R, Salehi H (2019) Determining constitutive behavior of the brain tissue using digital image correlation and finite element modeling. Biomech Model Mechanobiol 18:1927–1945. https://doi.org/10.1007/s10237-019-01186-6. (PMID: 10.1007/s10237-019-01186-6)
Feng Y, Okamoto RJ, Namani R, Genin GM, Bayly PV (2013) Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J Mech Behav Biomed Mater 23:117–132. https://doi.org/10.1016/j.jmbbm.2013.04.007. (PMID: 10.1016/j.jmbbm.2013.04.007)
Feng Y, Lee CH, Sun L, Ji S, Zhao X (2017) Characterizing white matter tissue in large strain via asymmetric indentation and inverse finite element modeling. J Mech Behav Biomed Mater 65:490–501. https://doi.org/10.1016/j.jmbbm.2016.09.020. (PMID: 10.1016/j.jmbbm.2016.09.020)
Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York. (PMID: 10.1007/978-1-4757-2257-4)
Hamhaber U, Sack I, Papazoglou S, Rump J, Klatt D, Braun J (2007) Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain. Acta Biomater 3:127–137. https://doi.org/10.1016/j.actbio.2006.08.007. (PMID: 10.1016/j.actbio.2006.08.007)
Hosseini-Farid M, Ramzanpour M, Ziejewski M, Karami G (2019) A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters. Int J Non Linear Mech 116:147–154. https://doi.org/10.1016/j.ijnonlinmec.2019.06.008. (PMID: 10.1016/j.ijnonlinmec.2019.06.008)
Hosseini-Farid M, Ramzanpour M, McLean J, Ziejewski M, Karami G (2020) A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2019.103475. (PMID: 10.1016/j.jmbbm.2019.103475)
Hrapko M, van Dommelen JA, Peters GW, Wismans JS (2008) Characterisation of the mechanical behaviour of brain tissue in compression and shear. Biorheology 45:663–676. https://doi.org/10.3233/bir-2008-0512. (PMID: 10.3233/bir-2008-0512)
Jiang Y, Li G, Qian LX, Liang S, Destrade M, Cao Y (2015) Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis. Biomech Model Mechanobiol 14:1119–1128. https://doi.org/10.1007/s10237-015-0658-0. (PMID: 10.1007/s10237-015-0658-0)
Jin X, Zhu F, Mao H, Shen M, Yang KH (2013) A comprehensive experimental study on material properties of human brain tissue. J Biomech 46:2795–2801. https://doi.org/10.1016/j.jbiomech.2013.09.001. (PMID: 10.1016/j.jbiomech.2013.09.001)
Kaster T, Sack I, Samani A (2011) Measurement of the hyperelastic properties of ex vivo brain tissue slices. J Biomech 44:1158–1163. https://doi.org/10.1016/j.jbiomech.2011.01.019. (PMID: 10.1016/j.jbiomech.2011.01.019)
Lujan TJ, Underwood CJ, Jacobs NT, Weiss JA (2009) Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J Appl Physiol 106:423–431. https://doi.org/10.1152/japplphysiol.90748.2008. (PMID: 10.1152/japplphysiol.90748.2008)
Maas SA, Weiss JA (2007) FEBio Theory Manual. https://help.febio.org/docs/FEBioTheory-4-0/ . Accessed 16 Feb 2023.
Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:011005. https://doi.org/10.1115/1.4005694. (PMID: 10.1115/1.4005694)
MacManus DB, Pierrat B, Murphy JG, Gilchrist MD (2017) Region and species dependent mechanical properties of adolescent and young adult brain tissue. Sci Rep. https://doi.org/10.1038/s41598-017-13727-z. (PMID: 10.1038/s41598-017-13727-z)
Madhukar A, Ostoja-Starzewski M (2019) Finite element methods in human head impact simulations: a review. Ann Biomed Eng 47:1832–1854. (PMID: 10.1007/s10439-019-02205-4)
Mao H, Unnikrishnan G, Rakesh V, Reifman J (2015) Untangling the effect of head acceleration on brain responses to blast waves. J Biomech Eng 137:124502. https://doi.org/10.1115/1.4031765. (PMID: 10.1115/1.4031765)
Meaney DF, Morrison B, Dale Bass C (2014) The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J Biomech Eng. https://doi.org/10.1115/1.4026364. (PMID: 10.1115/1.4026364)
Military Health System DOD TBI Worldwide Numbers. https://health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/DOD-TBI-Worldwide-Numbers . Accessed 10 Oct 2023.
Moerman KM, Holt CA, Evans SL, Simms CK (2009) Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo. J Biomech 42:1150–1153. https://doi.org/10.1016/j.jbiomech.2009.02.016. (PMID: 10.1016/j.jbiomech.2009.02.016)
Moran R, Smith JH, Garcia JJ (2014) Fitted hyperelastic parameters for human brain tissue from reported tension, compression, and shear tests. J Biomech 47:3762–3766. https://doi.org/10.1016/j.jbiomech.2014.09.030. (PMID: 10.1016/j.jbiomech.2014.09.030)
Nicolle S, Lounis M, Willinger R (2004) Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. Stapp Car Crash J 48:239–258.
Nicolle S, Lounis M, Willinger R, Palierne JF (2005) Shear linear behavior of brain tissue over a large frequency range. Biorheology 42:209–223.
Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng 124:244–252. https://doi.org/10.1115/1.1449907. (PMID: 10.1115/1.1449907)
Puso MA, Weiss JA (1998) Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J Biomech Eng 120:62–70. https://doi.org/10.1115/1.2834308. (PMID: 10.1115/1.2834308)
Rashid B, Destrade M, Gilchrist MD (2013) Mechanical characterization of brain tissue in simple shear at dynamic strain rates. J Mech Behav Biomed Mater 28:71–85. https://doi.org/10.1016/j.jmbbm.2013.07.017. (PMID: 10.1016/j.jmbbm.2013.07.017)
Simons M, Trajkovic K (2006) Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 119:4381–4389. https://doi.org/10.1242/jcs.03242. (PMID: 10.1242/jcs.03242)
Singh D, Cronin DS, Haladuick TN (2014) Head and brain response to blast using sagittal and transverse finite element models. Int J Numer Method Biomed Eng 30:470–489. https://doi.org/10.1002/cnm.2612. (PMID: 10.1002/cnm.2612)
Subramaniam DR, Unnikrishnan G, Sundaramurthy A, Rubio JE, Kote VB, Reifman J (2021) Cerebral vasculature influences blast-induced biomechanical responses of human brain tissue front bioeng. Biotechnol 9:744808. https://doi.org/10.3389/fbioe.2021.744808. (PMID: 10.3389/fbioe.2021.744808)
Sundaramurthy A, Alai A, Ganpule S, Holmberg A, Plougonven E, Chandra N (2012) Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model. J Neurotrauma 29:2352–2364. https://doi.org/10.1089/neu.2012.2413. (PMID: 10.1089/neu.2012.2413)
Sundaramurthy A et al (2021) A 3-D finite-element minipig model to assess brain biomechanical responses to blast exposure. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.757755. (PMID: 10.3389/fbioe.2021.757755)
Thibault KL, Margulies SS (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31:1119–1126. https://doi.org/10.1016/s0021-9290(98)00122-5. (PMID: 10.1016/s0021-9290(98)00122-5)
Velardi F, Fraternali F, Angelillo M (2006) Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech Model Mechanobiol 5:53–61. https://doi.org/10.1007/s10237-005-0007-9. (PMID: 10.1007/s10237-005-0007-9)
Weickenmeier J, de Rooij R, Budday S, Ovaert TC, Kuhl E (2017) The mechanical importance of myelination in the central nervous system. J Mech Behav Biomed Mater 76:119–124. https://doi.org/10.1016/j.jmbbm.2017.04.017. (PMID: 10.1016/j.jmbbm.2017.04.017)
Wu T, Hajiaghamemar M, Giudice JS, Alshareef A, Margulies SS, Panzer MB (2021) Evaluation of tissue-level brain injury metrics using species-specific simulations. J Neurotrauma 38:1879–1888. https://doi.org/10.1089/neu.2020.7445. (PMID: 10.1089/neu.2020.7445)
Yeh FC, Verstynen TD, Wang Y, Fernandez-Miranda JC, Tseng WY (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8:e80713. https://doi.org/10.1371/journal.pone.0080713. (PMID: 10.1371/journal.pone.0080713)
Zhang L, Makwana R, Sharma S (2013) Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front Neurol 4:88. https://doi.org/10.3389/fneur.2013.00088. (PMID: 10.3389/fneur.2013.00088)
Zhao W, Choate B, Ji S (2018) Material properties of the brain in injury-relevant conditions—experiments and computational modeling. J Mech Behav Biomed Mater 80:222–234. https://doi.org/10.1016/j.jmbbm.2018.02.005. (PMID: 10.1016/j.jmbbm.2018.02.005)
معلومات مُعتمدة: 2027367 National Science Foundation
فهرسة مساهمة: Keywords: Anisotropy; Biomechanics; Brain; Inverse finite element modeling; Oscillatory shear; Viscoelasticity
تواريخ الأحداث: Date Created: 20240508 Latest Revision: 20240508
رمز التحديث: 20240508
DOI: 10.1007/s10237-024-01852-4
PMID: 38717719
قاعدة البيانات: MEDLINE
الوصف
تدمد:1617-7940
DOI:10.1007/s10237-024-01852-4