دورية أكاديمية

Calibration plots for multistate risk predictions models.

التفاصيل البيبلوغرافية
العنوان: Calibration plots for multistate risk predictions models.
المؤلفون: Pate A; Centre for Health Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK., Sperrin M; Centre for Health Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.; NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, UK., Riley RD; Institute of Applied Health Research, University of Birmingham, Birmingham, UK., Peek N; Centre for Health Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.; NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, UK., Van Staa T; Centre for Health Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK., Sergeant JC; Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.; Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK., Mamas MA; Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent, UK., Lip GYH; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK.; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark., O'Flaherty M; NIHR Applied Research Collaboration NW Coast, University of Liverpool, Liverpool, UK.; Independent Researcher, Manchester, UK., Barrowman M; NIHR Applied Research Collaboration NW Coast, University of Liverpool, Liverpool, UK., Buchan I; Independent Researcher, Manchester, UK.; Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK., Martin GP; Centre for Health Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
المصدر: Statistics in medicine [Stat Med] 2024 Jun 30; Vol. 43 (14), pp. 2830-2852. Date of Electronic Publication: 2024 May 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8215016 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0258 (Electronic) Linking ISSN: 02776715 NLM ISO Abbreviation: Stat Med Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester ; New York : Wiley, c1982-
مواضيع طبية MeSH: Diabetes Mellitus, Type 2*/epidemiology , Models, Statistical* , Computer Simulation*, Humans ; Risk Assessment/methods ; Risk Assessment/statistics & numerical data ; Logistic Models ; Calibration ; Cardiovascular Diseases/epidemiology ; Renal Insufficiency, Chronic/epidemiology ; Probability
مستخلص: Introduction: There is currently no guidance on how to assess the calibration of multistate models used for risk prediction. We introduce several techniques that can be used to produce calibration plots for the transition probabilities of a multistate model, before assessing their performance in the presence of random and independent censoring through a simulation.
Methods: We studied pseudo-values based on the Aalen-Johansen estimator, binary logistic regression with inverse probability of censoring weights (BLR-IPCW), and multinomial logistic regression with inverse probability of censoring weights (MLR-IPCW). The MLR-IPCW approach results in a calibration scatter plot, providing extra insight about the calibration. We simulated data with varying levels of censoring and evaluated the ability of each method to estimate the calibration curve for a set of predicted transition probabilities. We also developed evaluated the calibration of a model predicting the incidence of cardiovascular disease, type 2 diabetes and chronic kidney disease among a cohort of patients derived from linked primary and secondary healthcare records.
Results: The pseudo-value, BLR-IPCW, and MLR-IPCW approaches give unbiased estimates of the calibration curves under random censoring. These methods remained predominately unbiased in the presence of independent censoring, even if the censoring mechanism was strongly associated with the outcome, with bias concentrated in low-density regions of predicted transition probability.
Conclusions: We recommend implementing either the pseudo-value or BLR-IPCW approaches to produce a calibration curve, combined with the MLR-IPCW approach to produce a calibration scatter plot. The methods have been incorporated into the "calibmsm" R package available on CRAN.
(© 2024 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.)
References: Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system: risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100(6):1619‐1636. doi:10.1378/chest.100.6.1619.
Jentzer JC, Bennett C, Wiley BM, et al. Predictive value of the Sequential Organ Failure Assessment score for mortality in a contemporary cardiac intensive care unit population. J Am Heart Assoc. 2018;7(6):e008169. doi:10.1161/JAHA.117.008169.
Hippisley‐Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357(3):j2099. doi:10.1136/bmj.j2099.
D'Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation. 2008;117(6):743‐753. doi:10.1161/CIRCULATIONAHA.107.699579.
Lim WS, Van Der Eerden MM, Laing R, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003;58(5):377‐382. doi:10.1136/thorax.58.5.377.
McAllister KSL, Ludman PF, Hulme W, et al. A contemporary risk model for predicting 30‐day mortality following percutaneous coronary intervention in England and Wales. Int J Cardiol. 2016;210:125‐132. doi:10.1016/j.ijcard.2016.02.085.
Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385‐397. doi:10.1007/s00198‐007‐0543‐5.
Caldas C, Greenberg DC, Kearins O, et al. Erratum to: PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12:1‐10. doi:10.1186/bcr2480.
Nashef SAM, Roques F, Sharples LD, et al. Euroscore II. Eur J Cardio‐Thoracic Surg. 2012;41(4):734‐745. doi:10.1093/ejcts/ezs043.
Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi‐state models. Stat Med. 2007;26(11):2389‐2430. doi:10.1002/sim.2712.
Siriwardhana C, Lim E, Davis J, Chen JJ. Progression of diabetes, ischemic heart disease, and chronic kidney disease in a three chronic conditions multistate model. BMC Public Health. 2018;18(1):1‐14. doi:10.1186/s12889‐018‐5688‐y.
LIST MFA, Freisling H, Viallon V, et al. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Med. 2020;10(18):5.
Neumann JT, Thao LTP, Callander E, et al. A multistate model of health transitions in older people: a secondary analysis of ASPREE clinical trial data. Lancet Healthy Longev. 2022;3(2):e89‐e97. doi:10.1016/S2666‐7568(21)00308‐1.
Lintu MK, Shreyas KM, Kamath A. A multi‐state model for kidney disease progression. Clin Epidemiol Glob Health. 2021;2022(13):100946. doi:10.1016/j.cegh.2021.100946.
Barrowman M. Multi‐State Clinical Prediction Models in Renal Replacement Therapy. 2022 https://research.manchester.ac.uk/en/studentTheses/multi‐state‐clinical‐prediction‐models‐in‐renal‐replacement‐thera.
Putter H, Der VHJ, De Bock GH, Elgalta R, Van De Velde CJH. Estimation and prediction in a multi‐state model for breast cancer. Biom J. 2006;48(3):366‐380. doi:10.1002/bimj.200510218.
Beesley LJ, Shuman AG, Mierzwa ML, et al. Development and assessment of a model for predicting individualized outcomes in patients with oropharyngeal cancer. JAMA Netw Open. 2021;4(8):1‐14. doi:10.1001/jamanetworkopen.2021.20055.
Le‐Rademacher JG, Peterson RA, Therneau TM, Sanford BL, Stone RM, Mandrekar SJ. Application of multi‐state models in cancer clinical trials. Clin Trials. 2018;15(5):489‐498. doi:10.1177/1740774518789098.
Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal‐external, and external validation. J Clin Epidemiol. 2016;69:245‐247. doi:10.1016/j.jclinepi.2015.04.005.
Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19(4):453‐473. doi:10.1002/(SICI)1097‐0258(20000229)19:4<453::AID‐SIM350>3.0.CO.
Sperrin M, Riley RD, Collins GS, Martin GP. Targeted validation: validating clinical prediction models in their intended population and setting. Diagn Prog Res. 2022;6(1):4‐9. doi:10.1186/s41512‐022‐00136‐8.
Harrell FE. Regression Modeling Strategies. Cham, Switzerland: Springer; 2015.
Steyerberg EW. In: Gail M, Jonathan S, Singer B, eds. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. 2nd ed. Cham, Switzerland: Springer; 2019. doi:10.1007/978‐3‐030‐16399‐0.
Riley RD, van der Windt D, Croft P, Moons KGM. Prognosis Research in Healthcare: Concepts, Methods, and Impact. Oxford: Oxford University Press; 2019.
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ. 2016;352:3‐7. doi:10.1136/bmj.i6.
Vickers AJ, Van Calster B, Steyerberg EW. A simple, step‐by‐step guide to interpreting decision curve analysis. Diagn Prog Res. 2019;3(1):1‐8. doi:10.1186/s41512‐019‐0064‐7.
Gerds TA, Schumacher M. Consistent estimation of the expected brier score in general survival models with right‐censored event times. Biom J. 2006;48(6):1029‐1040. doi:10.1002/bimj.200610301.
Royston P. Tools for checking calibration of a Cox model in external validation: approach based on individual event probabilities. Stata J. 2014;14(4):738‐755. doi:10.1177/1536867x1401400403.
Austin PC, Harrell FE, van Klaveren D. Graphical calibration curves and the integrated calibration index (ICI) for survival models. Stat Med. 2020;39(21):2714‐2742. doi:10.1002/sim.8570.
Austin PC, Putter H, Giardiello D, van Klaveren D. Graphical calibration curves and the integrated calibration index (ICI) for competing risk models. Diagn Prog Res. 2022;6(1):2. doi:10.1186/s41512‐021‐00114‐6.
Van Geloven N, Giardiello D, Bonneville EF, et al. Validation of prediction models in the presence of competing risks: a guide through modern methods. BMJ. 2022;377:1‐7. doi:10.1136/bmj‐2021‐069249.
Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol. 2016;74:167‐176. doi:10.1016/j.jclinepi.2015.12.005.
Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128‐138.
Austin PC, Steyerberg EW. Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Stat Med. 2014;33(3):517‐535. doi:10.1002/sim.5941.
Van Hoorde K, Vergouwe Y, Timmerman D, Van Huffel S, Steyerberg W, Van Calster B. Assessing calibration of multinomial risk prediction models. Stat Med. 2014;33(15):2585‐2596. doi:10.1002/sim.6114.
Van Hoorde K, Van Huffel S, Timmerman D, Bourne T, Van Calster B. A spline‐based tool to assess and visualize the calibration of multiclass risk predictions. J Biomed Inform. 2015;54:283‐293. doi:10.1016/j.jbi.2014.12.016.
Van Calster B, McLernon DJ, Van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):1‐7. doi:10.1186/s12916‐019‐1466‐7.
Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. 2013;13:33.
Titman AC, Sharples LD. Model diagnostics for multi‐state models. Stat Methods Med Res. 2010;19(6):621‐651. doi:10.1177/0962280209105541.
Spitoni C, Lammens V, Putter H. Prediction errors for state occupation and transition probabilities in multi‐state models. Biom J. 2018;60(1):34‐48. doi:10.1002/bimj.201600191.
Postmus D, Van Veldhuisen DJ, Jaarsma T, et al. The COACH risk engine: a multistate model for predicting survival and hospitalization in patients with heart failure. Eur J Heart Fail. 2012;14(2):168‐175. doi:10.1093/eurjhf/hfr163.
Beyer U, Dejardin D, Meller M, Rufibach K, Burger HU. A multistate model for early decision‐making in oncology. Biom J. 2020;62(3):550‐567. doi:10.1002/bimj.201800250.
Deschepper M, Eeckloo K, Malfait S, Benoit D, Callens S, Vansteelandt S. Prediction of hospital bed capacity during the COVID‐19 pandemic. BMC Health Serv Res. 2021;21(1):1‐10. doi:10.1186/s12913‐021‐06492‐3.
Kinoshita F, Yokota I, Mieno H, et al. Multi‐state model for predicting ocular progression in acute stevens‐Johnson syndrome/toxic epidermal necrolysis. PLoS One. 2021;16(12):1‐14. doi:10.1371/journal.pone.0260730.
Masia M, Padilla S, Moreno S, et al. Prediction of long‐term outcomes of HIV‐ infected patients developing non‐AIDS events using a multistate approach. PLoS One. 2017;112:1‐16.
Carobbio A, Guglielmelli P, Rumi E, et al. A multistate model of survival prediction and event monitoring in prefibrotic myelofibrosis. Blood Cancer J. 2020;10(10):1‐7. doi:10.1038/s41408‐020‐00368‐1.
Heinze G, Boulesteix A‐L, Kammer M, Morris TP, White IR. Phases of methodological research in biostatistics—building the evidence base for new methods. Biom J. 2022;66:e2200222. doi:10.1002/bimj.202200222.
Anderson J, Cain K, Gelber R. Analysis of survival by tumor response. J Clin Oncol. 1983;1:710‐719.
Dafni U. Landmark analysis at the 25‐year landmark point. Circ Cardiovasc Qual Outcomes. 2011;4(3):363‐371. doi:10.1161/CIRCOUTCOMES.110.957951.
Pate A, Martin GP. calibmsm. https://alexpate30.github.io/calibmsm/.
Aalen OO, Johansen S. An empirical transition matrix for non‐homogeneous Markov chains based on censored observations. Scand J Stat. 1978;5(3):141‐150.
de Wreede LC, Fiocco M, Putter H. mstate: An R package for the analysis of competing risks and multi‐state models. J Stat Softw. 2011;38(7). https://www.jstatsoft.org/article/view/v038i07.
Kleinbaum DG, Klein M. Survival Analysis: A Self‐Learning Text. 3rd ed. New York, NY: Springer New York; 2012. doi:10.1007/978‐1‐4419‐6646‐9.
Datta S, Satten GA. Validity of the Aalen‐Johansen estimators of stage occupation probabilities and Nelson‐Aalen estimators of integrated transition hazards for non‐Markov models. Stat Probab Lett. 2001;55(4):403‐411. doi:10.1016/S0167‐7152(01)00155‐9.
Glidden DV. Robust inference for event probabilities with non‐Markov event data. Biometrics. 2002;58:361‐368. http://ci.nii.ac.jp/naid/40005603729/en/.
Putter H, Spitoni C. Non‐parametric estimation of transition probabilities in non‐Markov multi‐state models: the landmark Aalen–Johansen estimator. Stat Methods Med Res. 2018;27(7):2081‐2092. doi:10.1177/0962280216674497.
Pepe MS. Inference for events with dependent risks in multiple endpoint studies. J Am Stat Assoc. 1991;86(415):770‐778. doi:10.1080/01621459.1991.10475108.
de Uña‐Álvarez J, Meira‐Machado L. Nonparametric estimation of transition probabilities in the non‐Markov illness‐death model: a comparative study. Biometrics. 2015;71(2):364‐375. doi:10.1111/biom.12288.
Titman AC. Transition probability estimates for non‐Markov multi‐state models. Biometrics. 2015;71(4):1034‐1041. doi:10.1111/biom.12349.
Andersen PK, Pohar PM. Pseudo‐observations in survival analysis. Stat Methods Med Res. 2010;19(1):71‐99. doi:10.1177/0962280209105020.
Andersen PK, Wandall ENS, Pohar PM. Inference for transition probabilities in non‐Markov multi‐state models. Lifetime Data Anal. 2022;28(4):585‐604. doi:10.1007/s10985‐022‐09560‐w.
Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925‐1931. doi:10.1093/eurheartj/ehu207.
Heinze G, Ambler G, Benner A. mfp: Multivariable Fractional Polynomials. https://cran.r‐project.org/package=mfp. Accessed July 24, 2018.
Robins JM, Finkelstein DM. Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log‐rank tests. Biometrics. 2000;56(3):779‐788. doi:10.1111/j.0006‐341X.2000.00779.x.
Yee TW. The VGAM package for the VGAM package for categorical data analysis. J Stat Softw. 2010;32(10):1‐34. doi:10.18637/jss.v032.i10.
Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. Stat Med. 2019;38(11):2074‐2102. doi:10.1002/sim.8086.
Pate A, GitHub repository. Manchester Predictive Healthcare Group. MRC‐Multi‐Outcome‐Project‐6‐Calibration‐Plots‐for‐Multistate‐Risk‐Prediction‐Models. 2023. https://github.com/manchester‐predictive‐healthcare‐group/CHI‐MRC‐multi‐outcome/tree/main/Project.
Riley RD, Ensor J, Snell KIE. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020;368:m441. doi:10.1136/bmj.m441.
NICE. CG181 Lipid modification—Cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. 2014. https://www.nice.org.uk/guidance/cg181/evidence/lipid‐modification‐update‐full‐guideline‐pdf‐243786637.
Arnett DK, Blumenthal RS, Albert MA, et al. ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596‐e646. doi:10.1161/CIR.0000000000000678.
Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111‐188. doi:10.1093/eurheartj/ehz455.
The Academy of Medical Sciences. Multimorbidity: A Priority for Global Health Research. 2018. https://acmedsci.ac.uk/file‐download/82222577.
Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross‐sectional study. Lancet. 2012;380(9836):37‐43. doi:10.1016/S0140‐6736(12)60240‐2.
Blodgett JM, Rockwood K, Theou O. Changes in the severity and lethality of age‐related health deficit accumulation in the USA between 1999 and 2018: a population‐based cohort study. Lancet Healthy Longev. 2021;2(2):e96‐e104. doi:10.1016/S2666‐7568(20)30059‐3.
European Observatory on Health Systems and Policies, Rijken M, Struckmann V, Dyakova M, Melchiorre MG, Al E. ICARE4EU: improving care for people with multiple chronic conditions in Europe. Eurohealth (Lond). 2013;19(3):29‐31.
Taylor AW, Price K, Gill TK, et al. Multimorbidity: not just an older person's issue. BMC Public Health. 2010;10(718):1‐10. doi:10.1186/1471‐2458‐10‐718.
Afshar S, Roderick PJ, Kowal P, Dimitrov BD, Hill AG. Multimorbidity and the inequalities of global ageing: a cross‐sectional study of 28 countries using the World Health Surveys. BMC Public Health. 2015;15(1):1‐10. doi:10.1186/s12889‐015‐2008‐7.
Arokiasamy P, Uttamacharya U, Jain K, et al. The impact of multimorbidity on adult physical and mental health in low‐ and middle‐income countries: what does the study on global ageing and adult health (SAGE) reveal? BMC Med. 2015;13(1):1‐16. doi:10.1186/s12916‐015‐0402‐8.
Garin N, Koyanagi A, Chatterji S, et al. Global multimorbidity patterns: a cross‐sectional, population‐based, multi‐country study. J Gerontol: Ser A Biol Sci Med Sci. 2016;71(2):205‐214. doi:10.1093/gerona/glv128.
Einarson TR, Acs A, Ludwig C, Panton UH. Economic burden of cardiovascular disease in type 2 diabetes: a systematic review. Value Health. 2018;21(7):881‐890. doi:10.1016/j.jval.2017.12.019.
Nichols GA, Brown JB. The impact of cardiovascular disease on medical care costs in subjects with and without type 2 diabetes. Diabetes Care. 2002;25(3):482‐486. doi:10.2337/diacare.25.3.482.
Wolf A, Dedman D, Campbell J, et al. Data resource profile: Clinical Practice Research Datalink (CPRD) Aurum. Int J Epidemiol. 2019;48(6):1740‐1740G. doi:10.1093/ije/dyz034.
De WLC, Fiocco M, Putter H. The mstate package for estimation and prediction in non‐ and semi‐parametric multi‐state and competing risks models. Comput Methods Prog Biomed. 2010;99(3):261‐274. doi:10.1016/j.cmpb.2010.01.001.
Riley RD, Snell KIE, Archer L, et al. Evaluation of clinical prediction models (part 3): calculating the sample size required for an external validation study. BMJ. 2024;384(part 3):e074821. doi:10.1136/bmj‐2023‐074821.
Riley RD, Debray TPA, Collins GS, et al. Minimum sample size for external validation of a clinical prediction model with a binary outcome. Stat Med. 2021;40(19):4230‐4251. doi:10.1002/sim.9025.
Snell KIE, Archer L, Ensor J, et al. External validation of clinical prediction models: simulation‐based sample size calculations were more reliable than rules‐of‐thumb. J Clin Epidemiol. 2021;135:79‐89. doi:10.1016/j.jclinepi.2021.02.011.
Archer L, Snell KIE, Ensor J, Hudda MT, Collins GS, Riley RD. Minimum sample size for external validation of a clinical prediction model with a continuous outcome. Stat Med. 2021;40(1):133‐146. doi:10.1002/sim.8766.
Riley RD, Collins GS, Ensor J, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time‐to‐event outcome. Stat Med. 2022;41(7):1280‐1295. doi:10.1002/sim.9275.
Riley RD, Collins GS. Stability of clinical prediction models developed using statistical or machine learning methods. Biom J. 2023;65(8):1‐22. doi:10.1002/bimj.202200302.
RStudio: Integrated Development for R. RStudio Team. 2020. http://www.rstudio.com/.
Brilleman SL, Wolfe R, Moreno‐Betancur M, Crowther MJ. Simulating survival data using the simsurv R package. J Stat Softw. 2021;97(3):1‐27. doi:10.18637/jss.v097.i03.
van Buuren S, Groothuis‐oudshoorn K. mice: Multivariate imputation by chained equations. J Stat Softw. 2011;45(3). https://www.jstatsoft.org/article/view/v045i03.
Xie Y. knitr: A General‐Purpose Package for Dynamic Report Generation in R. 2021. https://cran.r‐project.org/package=knitr.
Solt F, Hu Y, Keyes O, et al. dotwhisker: Dot‐and‐Whisker Plots of Regression Results. 2021. https://cran.r‐project.org/package=dotwhisker.
Folashade D, Microsoft Corporation, Westen S, Tenenbaum D. doParallel: Foreach Parallel Adaptor for the “parallel” Package. 2022. https://cran.r‐project.org/package=doParallel.
Folashade D, Ooi H, Calaway R, Microsoft, Weston S. foreach: Provides Foreach Looping Construct. 2022. https://cran.r‐project.org/package=foreach.
Wickham H, Francois R, Henry L, Muller K. dplyr: A Grammar of Data Manipulation. 2022.
Therneau TM. A package for Survival Analysis in S_. version 2.38. 2015. https://cran.r‐project.org/package=survival.
Blaser N, Vizcaya LS, Estill J, et al. Gems: an R package for simulating from disease progression models. J Stat Softw. 2015;64(10). https://www.jstatsoft.org/article/view/v064i10.
Canty A, Ripley B. boot: Bootstrap R (S‐Plus) Functions. 2022. https://cran.r‐project.org/package=boot.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. https://ggplot2.tidyverse.org.
Kassambara A. ggpubr: “ggplot2” Based Publication Ready Plots. 2020. https://cran.r‐project.org/package=ggpubr.
Urbanek S, Horner J. Cairo: R Graphics Device using Cairo Graphics Library for Creating High‐Quality Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG, PostScript) and Display (X11 and Win32) Output. 2022. https://cran.r‐project.org/package=Cairo.
معلومات مُعتمدة: MR/T025085/1 United Kingdom MRC_ Medical Research Council
فهرسة مساهمة: Keywords: calibration; clinical prediction; model validation; multistate model; risk prediction
تواريخ الأحداث: Date Created: 20240509 Date Completed: 20240614 Latest Revision: 20240614
رمز التحديث: 20240614
DOI: 10.1002/sim.10094
PMID: 38720592
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0258
DOI:10.1002/sim.10094