دورية أكاديمية

ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes.

التفاصيل البيبلوغرافية
العنوان: ProBAN: Neural network algorithm for predicting binding affinity in protein-protein complexes.
المؤلفون: Bogdanova EA; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia., Novoseletsky VN; Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
المصدر: Proteins [Proteins] 2024 Sep; Vol. 92 (9), pp. 1127-1136. Date of Electronic Publication: 2024 May 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8700181 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0134 (Electronic) Linking ISSN: 08873585 NLM ISO Abbreviation: Proteins Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: New York : Alan R. Liss, c1986-
مواضيع طبية MeSH: Proteins*/chemistry , Proteins*/metabolism , Neural Networks, Computer* , Protein Binding* , Algorithms*, Thermodynamics ; Databases, Protein ; Computational Biology/methods ; Binding Sites ; Protein Interaction Mapping/methods
مستخلص: Determining binding affinities in protein-protein and protein-peptide complexes is a challenging task that directly impacts the development of peptide and protein pharmaceuticals. Although several models have been proposed to predict the value of the dissociation constant and the Gibbs free energy, they are currently not capable of making stable predictions with high accuracy, in particular for complexes consisting of more than two molecules. In this work, we present ProBAN, a new method for predicting binding affinity in protein-protein complexes based on a deep convolutional neural network. Prediction is carried out for the spatial structures of complexes, presented in the format of a 4D tensor, which includes information about the location of atoms and their abilities to participate in various types of interactions realized in protein-protein and protein-peptide complexes. The effectiveness of the model was assessed both on an internal test data set containing complexes consisting of three or more molecules, as well as on an external test for the PPI-Affinity service. As a result, we managed to achieve the best prediction quality on these data sets among all the analyzed models: on the internal test, Pearson correlation R = 0.6, MAE = 1.60, on the external test, R = 0.55, MAE = 1.75. The open-source code, the trained ProBAN model, and the collected dataset are freely available at the following link https://github.com/EABogdanova/ProBAN.
(© 2024 Wiley Periodicals LLC.)
References: De Las Rivas J, Fontanillo C. Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol. 2010;6:e1000807.
Guo S. Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220:T1‐T23.
Szeto C, Lobos CA, Nguyen AT, Gras S. TCR recognition of peptide–MHC‐I: rule makers and breakers. Int J Mol Sci. 2020;22:68.
Fleishman S, Whitehead T, Ekiert D, et al. Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science. 2011;332:816‐821. doi:10.1126/science.1202617.
Sliwkowski M, Mellman I. Antibody therapeutics in cancer. Science. 2013;341:1192‐1198. doi:10.1126/science.1241145.
Guo W, Wisniewski J, Ji H. Hot spot‐based design of small‐molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett. 2014;24:2546‐2554. doi:10.1016/j.bmcl.2014.03.095.
Rosell M, Fernandez‐Recio J. Hot‐spot analysis for drug discovery targeting protein–protein interactions. Expert Opin Drug Discov. 2018;13:327‐338. doi:10.1080/17460441.2018.1430763.
Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future? J Med Chem. 2018;61:1382‐1414. doi:10.1021/acs.jmedchem.7b00318.
Wang SH, Yu J. Structure‐based design for binding peptides in anti‐cancer therapy. Biomaterials. 2018;156:1‐15. doi:10.1016/j.biomaterials.2017.11.024.
Al Qaraghuli MM, Kubiak‐Ossowska K, Ferro VA, Mulheran PA. Antibody‐protein binding and conformational changes: identifying allosteric signalling pathways to engineer a better effector response. Sci Rep. 2020;10:13696. doi:10.1038/s41598‐020‐70680‐0.
Liu S, Zhang C, Zhou H, Zhou Y. A physical reference state unifies the structure‐derived potential of mean force for protein folding and binding. Proteins. 2004;56:93‐101. doi:10.1002/prot.20019.
Ravikant DVS, Elber R. PIE‐efficient filters and coarse grained potentials for unbound protein–protein docking. Proteins. 2010;78:400‐419. doi:10.1002/prot.22550.
Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics. 2016;32:btw514. doi:10.1093/bioinformatics/btw514.
Abbasi WA, Yaseen A, Hassan FU, Andleeb S, Minhas FUAA. ISLAND: in‐silico proteins binding affinity prediction using sequence information. BioData Min. 2020;13:1‐13.
Asim MN, Ibrahim MA, Malik MI, Dengel A, Ahmed S. ADH‐PPI: an attention‐based deep hybrid model for protein–protein interaction prediction. iScience. 2022;25(10):105169.
Romero‐Molina S, Ruiz‐Blanco YB, Mieres‐Perez J, et al. PPI‐affinity: a web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity. J Proteome Res. 2022;21:1829‐1841.
Stepniewska‐Dziubinska MM, Zielenkiewicz P, Siedlecki P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics. 2018;34(21):3666‐3674. doi:10.1093/bioinformatics/bty374.
Jiménez J, Škalič M, Martínez‐Rosell G, Fabritiis GD. KDEEP: protein–ligand absolute binding affinity prediction via 3D‐convolutional neural networks. J Chem Inf Model. 2018;58(2):287‐296.
Li Y, Rezaei MA, Li C, Li X, Wu DO. DeepAtom: a framework for protein–ligand binding affinity prediction. IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2019;2019:303‐310.
Zhang H, Liao L, Saravanan KM, Yin P, Wei Y. DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity. PeerJ. 2019;7:e7362.
Yang Y, Zhao H, Wang J, Zhou Y. SPOT‐seq‐RNA: predicting protein‐RNA complex structure and RNA‐binding function by fold recognition and binding affinity prediction. Methods Mol Biol. 2014;1137:119‐130.
Deng L, Yang W, Liu H. PredPRBA: prediction of protein‐RNA binding affinity using gradient boosted regression trees. Front Genet. 2019;10:637.
Hong X, Tong X, Xie J, et al. An updated dataset and a structure‐based prediction model for protein–RNA binding affinity. Proteins. 2023;91:1245‐1253.
Kastritis PL, Bonvin AM. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface. 2013;10:20120835.
Guo Z, Yamaguchi R. Machine learning methods for protein–protein binding affinity prediction in protein design. Front Bioinform. 2022;2:1065703.
Jankauskaitė J, Jiménez‐García B, Dapku¯nas J, Fernández‐Recio J, Moal IH. SKEMPI 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics. 2019;35:462‐469. doi:10.1093/bioinformatics/bty635.
Tian F, Lv Y, Yang L. Structure‐based prediction of protein–protein binding affinity with consideration of allosteric effect. Amino Acids. 2012;43(2):531‐543.
PDBbind‐CN Database. Accessed December 9, 2023. http://www.pdbbind.org.cn/index.php.
RCSB Protein Data Bank. Accessed December 9, 2023. https://www.rcsb.org/.
Abraham MJ, Murtola T, Schultz R, et al. GROMACS: high performance molecular simulations through multi‐level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19‐25.
Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14(1):71‐73.
Biopython: Python Tools for Computational Molecular Biology. Accessed December 9, 2023. https://biopython.org/.
Jubb HC, Higueruelo AP, Ochoa‐Montano B, Pitt BWR, Ascher DB, Blundell TL. Arpeggio: a web server for calculating and visualising interatomic interactions in protein structures. J Mol Biol. 2017;429(3):365‐371.
Toulmé JJ. Stacking interactions: the key mechanism for binding of proteins to single‐stranded regions of native and damaged nucleic acids? Chromosomal Proteins and Gene Expression. Vol 101. Springer; 1985.
McGaughey GB, Gagné M, Rappé AK. pi‐Stacking interactions. Alive and well in proteins. J Biol Chem. 1998;273(25):15458‐15463.
Furutani Y. Ion–protein interactions of a potassium ion channel studied by attenuated total reflection Fourier transform infrared spectroscopy. Biophys Rev. 2018;10:235‐239. doi:10.1007/s12551‐017‐0337‐8.
Batoulis H, Schmidt T, Weber P, et al. Concentration dependent ion‐protein interaction patterns underlying protein oligomerization behaviours. Sci Rep. 2016;6:24131. doi:10.1038/srep24131.
Bošnjak I, Bojović V, Šegvić‐Bubić T, Bielen A. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank. Protein Eng Des Sel. 2014;27(3):65‐72.
Srinivasan N, Sowdhamini R, Ramakrishnan C, Balaram P. Conformations of disulfide bridges in proteins. Int J Pept Protein Res. 1990;36(2):147‐155.
Esposito L, Vitagliano L, Zagari A, Mazzarella L. Pyramidalization of backbone carbonyl carbon atoms in proteins. Protein Sci. 2000;9(10):2038‐2042.
Sahariah B, Sarma BK. Relative orientation of the carbonyl groups determines the nature of orbital interactions in carbonyl‐carbonyl short contacts. Chem Sci. 2018;10(3):909‐917. doi:10.1039/c8sc04221g.
Rahim A, Saha P, Jha KK, Sukumar N, Sarma BK. Reciprocal carbonyl‐carbonyl interactions in small molecules and proteins. Nat Commun. 2017;8(1):78.
Romero‐Molina S, Ruiz‐Blanco YB, Green JR, Sanchez‐Garcia E. ProtDCal‐suite: a web server for the numerical codification and functional analysis of proteins. Protein Sci. 2019;28:1734‐1743.
معلومات مُعتمدة: Non-commercial Foundation for the Advancement of Science and Education INTELLECT
فهرسة مساهمة: Keywords: interaction energy; multiprotein complexes; neural networks; protein binding; structure‐based features
المشرفين على المادة: 0 (Proteins)
تواريخ الأحداث: Date Created: 20240509 Date Completed: 20240806 Latest Revision: 20240806
رمز التحديث: 20240806
DOI: 10.1002/prot.26700
PMID: 38722047
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0134
DOI:10.1002/prot.26700