دورية أكاديمية

Simultaneous Exposure to Noise and Toluene Induces Oxidative and Inflammatory Damage in the Heart of Wistar Rats: Therapeutic Potential of Olea europaea L. Leaf Extract.

التفاصيل البيبلوغرافية
العنوان: Simultaneous Exposure to Noise and Toluene Induces Oxidative and Inflammatory Damage in the Heart of Wistar Rats: Therapeutic Potential of Olea europaea L. Leaf Extract.
المؤلفون: Ben Attia T; Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, University of Tunis El Manar, Research Unit N° 17/ES/13, Tunis, Tunisia. Takoua.benattia@fst.utm.tn., Nahdi A; Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, University of Tunis El Manar, Research Unit N° 17/ES/13, Tunis, Tunisia., Horchani M; Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia., Ben Ali R; Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, University of Tunis El Manar, Research Unit N° 17/ES/13, Tunis, Tunisia.; Unit of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia., Ben Jannet H; Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Monastir, Tunisia., Galai S; Research Laboratory of Neurological Diseases of the Child (LR18SP04), Department of Clinical Biology, National Institute Mongi Ben Hmida of Neurology at Tunis, Tunis, Tunisia., Elmay MV; Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, University of Tunis El Manar, Research Unit N° 17/ES/13, Tunis, Tunisia.; Unit of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia., Mhamdi A; Inflammation, Cell Proliferation and Cell Death, Faculty of Medicine of Tunis, University of Tunis El Manar, Research Unit N° 17/ES/13, Tunis, Tunisia.
المصدر: Cardiovascular toxicology [Cardiovasc Toxicol] 2024 Jul; Vol. 24 (7), pp. 667-686. Date of Electronic Publication: 2024 May 09.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 101135818 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0259 (Electronic) Linking ISSN: 15307905 NLM ISO Abbreviation: Cardiovasc Toxicol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Totowa, NJ : Humana Press, c2001-
مواضيع طبية MeSH: Rats, Wistar* , Oxidative Stress*/drug effects , Toluene*/toxicity , Plant Extracts*/pharmacology , Plant Extracts*/isolation & purification , Plant Leaves* , Inflammation Mediators*/metabolism , Inflammation Mediators*/blood , Antioxidants*/pharmacology , Cytokines*/metabolism , Cytokines*/blood , Anti-Inflammatory Agents*/pharmacology , Olea*/chemistry, Animals ; Male ; Molecular Docking Simulation ; Noise/adverse effects ; Disease Models, Animal ; Myocardium/metabolism ; Myocardium/pathology ; Cardiotoxicity ; Plants, Medicinal ; Rats ; Lipid Peroxidation/drug effects
مستخلص: Workers in occupational settings often face simultaneous exposure to multiple risk factors, including noise and chemicals. This study aimed to investigate the effects of combined exposure to noise and toluene on the cardiac health of rats, with a focus on assessing the potential mitigating effects of Olea europaea L. (OLE) leaf extract (40 mg/kg/day). The evaluation involved scrutinizing biochemical and hematological markers, quantifying oxidative stress levels, determining proinflammatory cytokines in the serum, and conducting an in silico Docking studies. Forty-two male Wistar rats were divided into eight groups-(n = 6/group):-Control-group-(C),-OLE-group-(Rats administered OLE), NT-group (rats co-exposed to noise and toluene), NT-4 group-(rats co-exposed to noise and toluene four weeks after the exposure period), NT + OLE1-group (rats co-exposed to noise and toluene treated with OLE for one week), NT + OLE2-group-(rats co-exposed to noise and toluene treated with OLE for two weeks), NT + OLE3-group-(rats co-exposed to noise and toluene treated with OLE for three weeks), and NT + OLE4-group (rats co-exposed to noise and toluene treated with OLE for four weeks). The results revealed that combined exposure to noise and toluene led to oxidative damage and increased serum levels of proinflammatory cytokines. However, OLE treatment attenuated these effects by reducing lipid peroxidation and enhancing catalase and superoxide dismutase activities. Additionally, OLE treatment significantly decreased proinflammatory cytokine levels compared to the noise and toluene co-exposed group. The study highlighted the potential of OLE to attenuate the adverse effects of combined exposure to noise and toluene, attributed to its anti-inflammatory and antioxidant properties.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Assunta, C., Ilaria, S., Gianfranco, T., Teodorico, C., Carmina, S., Anastasia, S., Roberto, G., Francesco, T., & Valeria, R. M. (2015). Noise and cardiovascular effects in workers of the sanitary fixtures industry. International Journal of Hygiene and Environmental Health, 218(1), 163–168. https://doi.org/10.1016/j.ijheh.2014.09.007. (PMID: 10.1016/j.ijheh.2014.09.00725455423)
Skogstad, M., Johannessen, H. A., Tynes, T., Mehlum, I. S., Nordby, K. C., & Lie, A. (2016). A systematic review of the cardiovascular effects of occupational noise. Occupational medicine (Oxford, England), 66(1), 10–16. https://doi.org/10.1093/occmed/kqv148. (PMID: 10.1093/occmed/kqv14826732793)
Brahem, A., Riahi, S., Chouchane, A., Kacem, I., Maalel, O. E., Maoua, M., & Mrizek, N. (2019). Impact du bruit professionnel sur le développement de l’hypertensionartérielle. enquêteréalisée au sein d’une centrale de production d’électricité et de gazenTunisie. Annales de Cardiologie et d’Angéiologie. https://doi.org/10.1016/j.ancard.2018.10.008. (PMID: 10.1016/j.ancard.2018.10.00830683483)
Milovanović, A., Jakovljević, B., Milovanović, J., Paunović, K., Ilić, D., Torbica, N., Corac, A., Samardzic, S., & Blagojević, T. (2007). Morbidity patterns of workers employed in pharmaceutical-chemical industry. Srpski arhiv za celokupno lekarstvo, 135(3–4), 184–190. https://doi.org/10.2298/sarh0704184m. (PMID: 10.2298/sarh0704184m17642459)
Zhang, Z., Liu, X., Guo, C., Zhang, X., Zhang, Y., Deng, N., Lai, G., Yang, A., Huang, Y., Dang, S., Zhu, Y., Xing, X., Xiao, Y., & Deng, Q. (2022). Hematological effects and benchmark doses of long-term co-exposure to benzene, toluene, and xylenes in a follow-up study on petrochemical workers. Toxics, 10(9), 502. https://doi.org/10.3390/toxics10090502. (PMID: 10.3390/toxics10090502361364679501893)
Kumar, S., Sharma, A., & Kshetrimayum, C. (2019). Environmental & occupational exposure & female reproductive dysfunction. The Indian Journal of Medical Research, 150(6), 532–545. https://doi.org/10.4103/ijmr.IJMR_1652_17. (PMID: 10.4103/ijmr.IJMR_1652_17320486177038808)
Crossin, R., Qama, A., Andrews, Z. B., Lawrence, A. J., & Duncan, J. R. (2019). The effect of adolescent inhalant abuse on energy balance and growth. Pharmacology Research & Perspectives, 7(4), e00498. https://doi.org/10.1002/prp2.498. (PMID: 10.1002/prp2.498)
Filley, C. M., Halliday, W., & Kleinschmidt-Demasters, B. K. (2004). The effects of toluene on the central nervous system. Journal of Neuropathology & Experimental Neurology, 63(1), 1–12. https://doi.org/10.1093/jnen/63.1.1. (PMID: 10.1093/jnen/63.1.1)
Ayan, M., Tas, U., Sogut, E., Kuloglu, T., Cayli, S., Kocaman, N., Karaca, Z. I., & Sahin, M. (2013). The apoptotic effect of a high dose of toluene on liver tissue during the acute phase: An experimental study. Toxicology and industrial health, 29(8), 728–736. https://doi.org/10.1177/0748233712442731. (PMID: 10.1177/074823371244273122491721)
Tas, U., Ogeturk, M., Kuloglu, T., Sapmaz, H. I., Kocaman, N., Zararsiz, I., & Sarsilmaz, M. (2013). HSP70 immune reactivity and TUNEL positivity in the liver of toluene-inhaled and melatonin-treated rats. Toxicology and Industrial Health, 29(6), 514–522. https://doi.org/10.1177/0748233712440138. (PMID: 10.1177/074823371244013822438294)
Ballantyne, B. (2016). Perspectives in basic and applied toxicology. Wiltshire, England: Elsevier Science.
Taamalli, A., Arráez-Román, D., Zarrouk, M., Valverde, J., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2012). The occurrence and bioactivity of polyphenols in Tunisian olive products and by-products: A review. Journal of Food Science, 77(4), R83–R92. https://doi.org/10.1111/j.1750-3841.2011.02599.x. (PMID: 10.1111/j.1750-3841.2011.02599.x22352878)
de Bock, M., Derraik, J. G., Brennan, C. M., Biggs, J. B., Morgan, P. E., Hodgkinson, S. C., Hofman, P. L., & Cutfield, W. S. (2013). Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PloS One, 8(3), e57622. https://doi.org/10.1371/journal.pone.0057622. (PMID: 10.1371/journal.pone.0057622235164123596374)
Burja, B., Kuret, T., Janko, T., Topalović, D., Živković, L., Mrak-Poljšak, K., Spremo-Potparević, B., Žigon, P., Distler, O., Čučnik, S., Sodin-Semrl, S., Lakota, K., & Frank-Bertoncelj, M. (2019). Olive leaf extract attenuates inflammatory activation and dna damage in human arterial endothelial cells. Front Cardiovasc Med., 16(6), 56. https://doi.org/10.3389/fcvm.2019.00056.PMID:31157238;PMCID:PMC6531989. (PMID: 10.3389/fcvm.2019.00056.PMID:31157238;PMCID:PMC6531989)
Gürbüz, M., & Öğüt, S. (2020). Antidiabetic effect of olive leaf extract on streptozotocin-induced diabetes mellitus in experimental animals. Nutricion Hosp, 37(5), 1012–1021. https://doi.org/10.20960/nh.03051. (PMID: 10.20960/nh.03051)
Ismail, M. A., Norhayati, M. N., & Mohamad, N. (2021). Olive leaf extract effect on cardiometabolic profile among adults with prehypertension and hypertension: A systematic review and meta-analysis. PeerJ, 9, e11173. https://doi.org/10.7717/peerj.11173. (PMID: 10.7717/peerj.11173338688208035902)
Gonzalez-Ortega, R., Di Mattia, C. D., Pittia, P., & Natasa, P. U. (2023). Effect of heat treatment on phenolic composition and radical scavenging activity of olive leaf extract at different pH conditions: A spectroscopic and kinetic study. Journal of the Science of Food and Agriculture, 103(4), 2047–2056. https://doi.org/10.1002/jsfa.12371. (PMID: 10.1002/jsfa.1237136461135)
Boss, A., Bishop, K. S., Marlow, G., Barnett, M. P., & Ferguson, L. R. (2016). Evidence to support the anti-cancer effect of olive leaf extract and future directions. Nutrients, 8(8), 513. https://doi.org/10.3390/nu8080513. (PMID: 10.3390/nu8080513275482174997426)
Albasher, G. (2018). Anti-fibrogenic and hepatoprotective potential of the ethanolic olive extract on cadmium-induced toxicity in rats. Life Sciences. https://doi.org/10.7537/marslsj150718.01. (PMID: 10.7537/marslsj150718.01)
Ben Attia, T., Ben Ali, R., Nahdi, A., Galai, S., Ghali, R., Rammeh, S., Véronique Elmay, M., Mhamdi, A., & Olea, E. L. (2023). Leaf extract mitigates oxidative and histological damage in rat heart tissue exposed to combined noise and toluene: an experimental study. Saudi Pharmaceutical Journal. https://doi.org/10.1016/j.jsps.2023.06.016. (PMID: 10.1016/j.jsps.2023.06.0163757686110415226)
Szczuko, M., Kozioł, I., Kotlęga, D., Brodowski, J., & Drozd, A. (2021). The role of thromboxane in the course and treatment of ischemic stroke: review. International Journal of Molecular Sciences, 22(21), 11644. https://doi.org/10.3390/ijms222111644. (PMID: 10.3390/ijms222111644347690748584264)
Warner, T. D., Nylander, S., & Whatling, C. (2011). Anti-platelet therapy: Cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. British Journal of Clinical Pharmacology, 72(4), 619–633. https://doi.org/10.1111/j.1365-2125.2011.03943.x. (PMID: 10.1111/j.1365-2125.2011.03943.x213201543195738)
Patrono, C. (2016). Cardiovascular effects of cyclooxygenase-2 inhibitors: A mechanistic and clinical perspective. British Journal of Clinical Pharmacology, 82(4), 957–964. https://doi.org/10.1111/bcp.13048. (PMID: 10.1111/bcp.13048273171385137820)
Zamora, R., Vodovotz, Y., & Billiar, T. R. (2000). Inducible nitric oxide synthase and inflammatory diseases. Molecular Medicine (Cambridge, Mass.)., 6(5), 347–373. (PMID: 109520181949959)
Lubos, E., Handy, D. E., & Loscalzo, J. (2008). Role of oxidative stress and nitric oxide in atherothrombosis. Frontiers in Bioscie nce: A Journal and Virtual Library, 13, 5323–5344. https://doi.org/10.2741/3084. (PMID: 10.2741/3084)
Mudau, M., Genis, A., Lochner, A., & Strijdom, H. (2012). Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovascular Journal of Africa, 23(4), 222–231. https://doi.org/10.5830/CVJA-2011-068.PMID:22614668;PMCID:PMC3721957. (PMID: 10.5830/CVJA-2011-068.PMID:22614668;PMCID:PMC3721957226146683721957)
Chen, Q. M., & Maltagliati, A. J. (2018). Nrf2 at the heart of oxidative stress and cardiac protection. Physiological Genomics, 50(2), 77–97. https://doi.org/10.1152/physiolgenomics.00041.2017. (PMID: 10.1152/physiolgenomics.00041.201729187515)
Carlstrom, M., & Montenegro, M. F. (2019). Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. Journal of Internal Medicine, 285(1), 2–18. https://doi.org/10.1111/joim.12818. (PMID: 10.1111/joim.1281830039620)
Senoner, T., & Dichtl, W. (2019). Oxidative stress in cardiovascular diseases: Still a therapeutic target. Nutrients, 11(9), 2090. https://doi.org/10.3390/nu11092090. (PMID: 10.3390/nu11092090314878026769522)
Sidhu, R. S., Lee, J. Y., Yuan, C., & Smith, W. L. (2010). Comparison of cyclooxygenase-1 crystal structures: Cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 49(33), 7069–7079. https://doi.org/10.1021/bi1003298. (PMID: 10.1021/bi100329820669977)
Grädler, U., Fuchss, T., Ulrich, W. R., Boer, R., Strub, A., Hesslinger, C., Anézo, C., Diederichs, K., & Zaliani, A. (2011). Novel nanomolar imidazo[4,5-b]pyridines as selective nitric oxide synthase (iNOS) inhibitors: SAR and structural insights. Bioorganic & Medicinal Chemistry Letters, 21(14), 4228–4232. https://doi.org/10.1016/j.bmcl.2011.05.073. (PMID: 10.1016/j.bmcl.2011.05.073)
Hinners, R. G., Burkart, J. K., & Punte, C. L. (1968). Animal inhalation exposure chambers. Archives of Environmental Health: An International Journal, 16(2), 194–206. https://doi.org/10.1080/00039896.1968.10665043. (PMID: 10.1080/00039896.1968.10665043)
Gannouni, N., Mhamdi, A., Tebourbi, O., El May, M., Sakly, M., & Rhouma, K. B. (2013). Qualitative and quantitative assessment of noise at moderate intensities on the extra-auditory system in adult rats. Noise & Health, 15(67), 406–411. https://doi.org/10.4103/1463-1741.121236. (PMID: 10.4103/1463-1741.121236)
Bahri, S., Abdennabi, R., Nahdi, A., Ali, R., Mlika, M., Jameleddine S. Effect of Tunisian Olive Leaf Extract on oxidative stress and lung fibrosis in rats. European Respiratory Journal (2020). .56: 3382; congress-2020.3382. https://erj.ersjournals.com/content/56/suppl_64/3382 .
Buege, J. A., and Aust, S. D., 1978. [30] Microsomal lipid peroxidation. Biomembranes - Part C: Biological Oxidations, 302–310.
Aebi, H. (1984). Catalase in vitro. Oxygen Radicals in Biological Systems, 105, 121–126. (PMID: 10.1016/S0076-6879(84)05016-3)
Beyer, W. F., Jr., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559–566. https://doi.org/10.1016/0003-2697(87)90489-1. (PMID: 10.1016/0003-2697(87)90489-13034103)
García, N., Zazueta, C., & Aguilera-Aguirre, L. (2017). Oxidative stress and inflammation in cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2017, 5853238. https://doi.org/10.1155/2017/5853238. (PMID: 10.1155/2017/5853238285366465426074)
Pignatelli, P., Menichelli, D., Pastori, D., & Violi, F. (2018). Oxidative stress and cardiovascular disease: New insights. Kardiologia polska, 76(4), 713–722. https://doi.org/10.5603/KP.a2018.0071. (PMID: 10.5603/KP.a2018.007129537483)
Steven, S., Frenis, K., Oelze, M., Kalinovic, S., Kuntic, M., Bayo Jimenez, M. T., Vujacic-Mirski, K., Helmstädter, J., Kröller-Schön, S., Münzel, T., & Daiber, A. (2019). Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2019, 7092151. https://doi.org/10.1155/2019/7092151. (PMID: 10.1155/2019/7092151313415336612399)
Charakida, M., & Deanfield, J. E. (2013). Nighttime aircraft noise exposure: Flying towards arterial disease. European Heart Journal, 34(45), 3472–3474. https://doi.org/10.1093/eurheartj/eht339. (PMID: 10.1093/eurheartj/eht33923986540)
Münzel, T., Daiber, A., Steven, S., Tran, L. P., Ullmann, E., Kossmann, S., Schmidt, F. P., Oelze, M., Xia, N., Li, H., Pinto, A., Wild, P., Pies, K., Schmidt, E. R., Rapp, S., & Kröller-Schön, S. (2017). Effects of noise on vascular function, oxidative stress, and inflammation: Mechanistic insight from studies in mice. European Heart Journal, 38(37), 2838–2849. https://doi.org/10.1093/eurheartj/ehx081. (PMID: 10.1093/eurheartj/ehx081283292615837459)
Murata, M., Tsujikawa, M., & Kawanishi, S. (1999). Oxidative DNA damage by minor metabolites of toluene may lead to carcinogenesis and reproductive dysfunction. Biochemical and Biophysical Research Communications, 261(2), 478–483. https://doi.org/10.1006/bbrc.1999.1041. (PMID: 10.1006/bbrc.1999.104110425210)
Mattia, C. J., Ali, S. F., & Bondy, S. C. (1993). Toluene-induced oxidative stress in several brain regions and other organs. Molecular and Chemical Neuropathology, 18(3), 313–328. https://doi.org/10.1007/BF03160122. (PMID: 10.1007/BF031601228507307)
Martínez-Alfaro, M., Cárabez-Trejo, A., Gallegos-Corona, M. A., Pedraza-Aboytes, G., Hernández-Chan, N. G., & Leo-Amador, G. E. (2010). Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse. Journal of Applied Toxicology : JAT, 30(3), 226–232. https://doi.org/10.1002/jat.1488. (PMID: 10.1002/jat.148819885856)
Baydas, G., Ozveren, F., Tuzcu, M., & Yasar, A. (2005). Effects of thinner exposure on the expression pattern of neural cell adhesion molecules, level of lipid peroxidation in the brain, and cognitive function in rats. European Journal of Pharmacology, 512(2–3), 181–187. https://doi.org/10.1016/j.ejphar.2005.02.038. (PMID: 10.1016/j.ejphar.2005.02.03815840403)
Halifeoglu, I., Canatan, H., Ustundag, B., Ilhan, N., & Inanc, F. (2000). Effect of thinner inhalation on lipid peroxidation and some antioxidant enzymes of people working with paint thinner. Cell Biochemistry and Function, 18(4), 263–267. https://doi.org/10.1002/1099-0844(200012)18:4%3c263::AID-CBF882%3e3.0.CO;2-1. (PMID: 10.1002/1099-0844(200012)18:4<263::AID-CBF882>3.0.CO;2-111180289)
Tokunaga, I., Gotohda, T., Ishigami, A., Kitamura, O., & Kubo, S. (2003). Toluene inhalation induced 8-hydroxy-2’-deoxyguanosine formation as the peroxidative degeneration in rat organs. Legal Medicine (Tokyo, Japan), 5(1), 34–41. https://doi.org/10.1016/s1344-6223(03)00004-x. (PMID: 10.1016/s1344-6223(03)00004-x12935648)
Montes, S., Yee-Rios, Y., & Páez-Martínez, N. (2019). Environmental enrichment restores oxidative balance in animals chronically exposed to toluene: Comparison with melatonin. Brain Research Bulletin, 144, 58–67. https://doi.org/10.1016/j.brainresbull.2018.11.007. (PMID: 10.1016/j.brainresbull.2018.11.00730453037)
Kruk, I., Aboul-Enein, H. Y., Michalska, T., Lichszteld, K., & Kładna, A. (2005). Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence, 20(2), 81–9. https://doi.org/10.1002/bio.808. (PMID: 10.1002/bio.80815803505)
Geyikoglu, F., Emir, M., Colak, S., Koc, K., Turkez, H., Bakir, M., Hosseinigouzdagani, M., Cerig, S., Keles, O. N., & Ozek, N. S. (2017). Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury. J Food Drug Anal, 25(2), 447–459. https://doi.org/10.1016/j.jfda.2016.07.002. (PMID: 10.1016/j.jfda.2016.07.00228911689)
Elmaksoud, H. A. A., Motawea, M. H., Desoky, A. A., Elharrif, M. G., & Ibrahimi, A. (2021). Hydroxytyrosol alleviate intestinal inflammation, oxidative stress, and apoptosis resulted in ulcerative colitis. Biomedicine & Pharmacotherapy = Biomedicine & Pharmacotherapy, 142, 112073. https://doi.org/10.1016/j.biopha.2021.112073. (PMID: 10.1016/j.biopha.2021.112073)
Asghari, A. A., Mahmoudabady, M., Shabab, S., & Niazmand, S. (2022). Anti-inflammatory, anti-oxidant and anti-apoptotic effects of olive leaf extract in cardiac tissue of diabetic rats. The Journal of Pharmacy and Pharmacology, 74(7), 961–972. https://doi.org/10.1093/jpp/rgac019. (PMID: 10.1093/jpp/rgac01935551403)
Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1), 71. https://doi.org/10.1186/s12937-016-0186-5. (PMID: 10.1186/s12937-016-0186-5274566814960740)
Karković Marković, A., Torić, J., Barbarić, M., & Jakobušić Brala, C. (2019). Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules (Basel, Switzerland), 24(10), 2001. (PMID: 10.3390/molecules2410200131137753)
Dekdouk, N., Malafronte, N., Russo, D., Faraone, I., De Tommasi, N., Ameddah, S., Severino, L., & Milella, L. (2015). Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro. Evidence-Based Complementary and Alternative Medicine: eCAM. https://doi.org/10.1155/2015/684925. (PMID: 10.1155/2015/68492526557862)
Abreu-Naranjo, R., Paredes-Moreta, J. G., Granda-Albuja, G., Iturralde, G., González-Paramás, A. M., & Alvarez-Suarez, J. M. (2020). Bioactive compounds, phenolic profile, antioxidant capacity and effectiveness against lipid peroxidation of cell membranes of Mauritia flexuosa L. fruit extracts from three biomes in the ecuadorian amazon. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e05211. (PMID: 10.1016/j.heliyon.2020.e05211331028447569302)
Amin, M. N., Siddiqui, S. A., Ibrahim, M., Hakim, M. L., Ahammed, M. S., Kabir, A., & Sultana, F. (2020). Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Medicine, 8, 2050312120965752. https://doi.org/10.1177/2050312120965752. (PMID: 10.1177/2050312120965752331941997594225)
Rurik, J. G., Aghajanian, H., & Epstein, J. A. (2021). Immune cells and immunotherapy for cardiac injury and repair. Circulation Research, 128(11), 1766–1779. https://doi.org/10.1161/CIRCRESAHA.121.318005. (PMID: 10.1161/CIRCRESAHA.121.318005340434248171813)
Mallat, Z., & Binder, C. J. (2022). The why and how of adaptive immune responses in ischemic cardiovascular disease. Nature Cardiovascular Research, 1, 431–444. https://doi.org/10.1038/s44161-022-00049-1. (PMID: 10.1038/s44161-022-00049-1363822007613798)
Berköz, M., Kahraman, T., Shamsulddin, Z. N., & Krośniak, M. (2021). Antioxidant and anti-inflammatory effect of olive leaf extract treatment in diabetic rat brain. Journal of Basic and Clinical Physiology and Pharmacology, 34(2), 187–196. https://doi.org/10.1515/jbcpp-2021-0054. (PMID: 10.1515/jbcpp-2021-005434134180)
Toukh, M., Gordon, S. P., & Othman, M. (2014). Construction noise induces hypercoagulability and elevated plasma corticosteroids in rats. Clinical and Applied Thrombosis/Hemostasis: Official Journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis, 20(7), 710–715. https://doi.org/10.1177/1076029613483168. (PMID: 10.1177/107602961348316823568888)
Haft, J. I., & Fani, K. (1973). Stress and the induction of intravascular platelet aggregation in the heart. Circulation, 48(1), 164–169. https://doi.org/10.1161/01.cir.48.1.164. (PMID: 10.1161/01.cir.48.1.1644781235)
de Roos, B., Zhang, X., Rodriguez Gutierrez, G., Wood, S., Rucklidge, G. J., Reid, M. D., Duncan, G. J., Cantlay, L. L., Duthie, G. G., & O’Kennedy, N. (2011). Anti-platelet effects of olive oil extract: In vitro functional and proteomic studies. European Journal of Nutrition, 50(7), 553–562. https://doi.org/10.1007/s00394-010-0162-3. (PMID: 10.1007/s00394-010-0162-321197537)
Rubio-Senent, F., de Roos, B., Duthie, G., Fernández-Bolaños, J., & Rodríguez-Gutiérrez, G. (2015). Inhibitory and synergistic effects of natural olive phenols on human platelet aggregation and lipid peroxidation of microsomes from vitamin E-deficient rats. European Journal of Nutrition, 54(8), 1287–1295. https://doi.org/10.1007/s00394-014-0807-8. (PMID: 10.1007/s00394-014-0807-825504445)
Sabahi A, Moradi I. The Effects of Noise Exposure on Rat’s Hematologic Parameters and Red Cell Indices. IJMS. 2002;27(2) [Google Scholar].
Mohammadi, S., Labbafinejad, Y., & Attarchi, M. (2010). Combined effects of ototoxic solvents and noise on hearing in automobile plant workers in Iran. Arhiv za Higijenu Rada i Toksikologiju, 61(3), 267–274. https://doi.org/10.2478/10004-1254-61-2010-2013. (PMID: 10.2478/10004-1254-61-2010-201320860967)
فهرسة مساهمة: Keywords: Olea europaea L. leaf extract; Heart; Noise; Toluene
المشرفين على المادة: 3FPU23BG52 (Toluene)
0 (Plant Extracts)
0 (Inflammation Mediators)
0 (Antioxidants)
0 (Cytokines)
0 (Anti-Inflammatory Agents)
تواريخ الأحداث: Date Created: 20240509 Date Completed: 20240627 Latest Revision: 20240627
رمز التحديث: 20240627
DOI: 10.1007/s12012-024-09867-0
PMID: 38722494
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0259
DOI:10.1007/s12012-024-09867-0