دورية أكاديمية

Comparison of feline and human immunodeficiency virus reverse transcriptase enzymes through chemical screening and computational analysis.

التفاصيل البيبلوغرافية
العنوان: Comparison of feline and human immunodeficiency virus reverse transcriptase enzymes through chemical screening and computational analysis.
المؤلفون: Thammajong P; Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand., Aiebchun T; Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand., Boonyarattanakalin K; College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand., Gleeson D; Department of Chemistry & Applied Computational Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand., Pobsuk N; Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand., Hannongbua S; Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand., Choowongkomon K; Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand., Gleeson MP; Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
المصدر: Chemical biology & drug design [Chem Biol Drug Des] 2024 May; Vol. 103 (5), pp. e14530.
نوع المنشور: Journal Article; Comparative Study; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262549 Publication Model: Print Cited Medium: Internet ISSN: 1747-0285 (Electronic) Linking ISSN: 17470277 NLM ISO Abbreviation: Chem Biol Drug Des Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford : Wiley-Blackwell, 2006-
مواضيع طبية MeSH: Reverse Transcriptase Inhibitors*/pharmacology , Reverse Transcriptase Inhibitors*/chemistry , Immunodeficiency Virus, Feline*/drug effects , HIV Reverse Transcriptase*/antagonists & inhibitors , HIV Reverse Transcriptase*/metabolism, Animals ; Cats ; Humans ; Structure-Activity Relationship ; Pyrimidines/chemistry ; Pyrimidines/pharmacology ; Alkynes/chemistry ; Alkynes/pharmacology ; HIV-1/drug effects ; HIV-1/enzymology ; Cyclopropanes/pharmacology ; Cyclopropanes/chemistry ; Molecular Docking Simulation ; Benzoxazines/chemistry ; Benzoxazines/pharmacology
مستخلص: Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC 50 s at the two targets to be strong (r 2  = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC 50 of 0.030 μM ± 0.009. This compared to FIV IC 50 values of 0.22 ± 0.17 μM, 0.040 ± 0.010 μM and >160 μM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.
(© 2024 John Wiley & Sons Ltd.)
References: Amacker, M., Hottiger, M., & Hübscher, U. (1995). Feline immunodeficiency virus reverse transcriptase: Expression, functional characterization, and reconstitution of the 66‐ and 51‐kilodalton subunits. Journal of Virology, 69, 6273–6279.
Auwerx, J., Esnouf, R., De Clercq, E., & Balzarini, J. (2004). Susceptibility of feline immunodeficiency virus/human immunodeficiency virus type 1 reverse transcriptase chimeras to non‐nucleoside RT inhibitors. Molecular Pharmacology, 65, 244–251.
Beebe, A. M., Faith, T. G., Sparger, E. E., Torten, M., Pedersen, N. C., & Dandekar, S. (1994). Evaluation of in vivo and in vitro interactions of feline immunodeficiency virus and feline leukemia virus. AIDS, 8, 873–878. https://doi.org/10.1097/00002030‐199407000‐00002.
Bendinelli, M., Pistello, M., Lombardi, S., Poli, A., Garzelli, C., Matteucci, D., Ceccherini‐Nelli, L., Malvaldi, G., & Tozzini, F. (1995). Feline immunodeficiency virus: An interesting model for AIDS studies and an important cat pathogen. Clinical Microbiology Reviews, 8, 87–112.
Bisset, L. R., Lutz, H., Böni, J., Hofmann‐Lehmann, R., Lüthy, R., & Schüpbach, J. (2002). Combined effect of zidovudine (ZDV), lamivudine (3TC) and abacavir (ABC) antiretroviral therapy in suppressing in vitro FIV replication. Antiviral Research, 53, 35–45.
Boyer, P. L., Currens, M. J., McMahon, J. B., Boyd, M. R., & Hughes, S. H. (1993). Analysis of nonnucleoside drug‐resistant variants of human immunodeficiency virus type 1 reverse transcriptase. Journal of Virology, 67, 2412–2420.
Brown, M. A., Munkhtsog, B., Troyer, J. L., Ross, S., Sellers, R., Fine, A. E., Swanson, W. F., Roelke, M. E., & O'Brien, S. J. (2010). Feline immunodeficiency virus (FIV) in wild Pallas’ cats. Veterinary Immunology and Immunopathology, 134, 90–95.
Choengpanya, K., Ratanabunyong, S., Seetaha, S., Tabtimmai, L., & Choowongkomon, K. (2021). Anti‐HIV‐1 reverse transcriptase property of some edible mushrooms in Asia. Saudi Journal of Biological Sciences, 28, 2807–2815.
Das, K., & Arnold, E. (2013). HIV‐1 reverse transcriptase and antiviral drug resistance. Part 1. Current Opinion in Virology, 3, 111–118.
De Clercq, E. (1995). Antiviral therapy for human immunodeficiency virus infections. Clinical Microbiology Reviews, 8, 200–239.
Esnouf Robert, M., Ren, J., Hopkins Andrew, L., Ross Carl, K., Jones, E. Y., Stammers David, K., & Stuart David, I. (1997). Unique features in the structure of the complex between HIV‐1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U‐90152 explain resistance mutations for this nonnucleoside inhibitor. Proceedings of the National Academy of Sciences, 94, 3984–3989.
Frey, K. M., Bollini, M., Mislak, A. C., Cisneros, J. A., Gallardo‐Macias, R., Jorgensen, W. L., & Anderson, K. S. (2012). Crystal structures of HIV‐1 reverse transcriptase with picomolar inhibitors reveal key interactions for drug design. Journal of the American Chemical Society, 134, 19501–19503.
Gaussian 16, Revision C.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. Gaussian, Inc., Wallingford CT (2016).
Galilee, M., & Alian, A. (2018). The structure of FIV reverse transcriptase and its implications for non‐nucleoside inhibitor resistance. PLoS Pathogens, 14, e1006849.
Gu, S.‐X., Qiao, H., Zhu, Y.‐Y., Shu, Q.‐C., Liu, H., Ju, X.‐L., De Clercq, E., Balzarini, J., & Pannecouque, C. (2015). A novel family of diarylpyrimidines (DAPYs) featuring a diatomic linker: Design, synthesis and anti‐HIV activities. Bioorganic & Medicinal Chemistry, 23, 6587–6593.
Ha, B., Larsen, K. P., Zhang, J., Fu, Z., Montabana, E., Jackson, L. N., Chen, D.‐H., & Puglisi, E. V. (2021). High‐resolution view of HIV‐1 reverse transcriptase initiation complexes and inhibition by NNRTI drugs. Nature Communications, 12, 2500.
Hartmann, K. (2015). Efficacy of antiviral chemotherapy for retrovirus‐infected cats. Journal of Feline Medicine and Surgery, 17, 925–939.
Hartmann, K., Wooding, A., & Bergmann, M. (2015). Efficacy of antiviral drugs against feline immunodeficiency virus. Veterinary Sciences, 2, 456–476.
Hsiou, Y., Ding, J., Das, K., Clark, A. D., Jr., Boyer, P. L., Lewi, P., Janssen, P. A., Kleim, J. P., Rösner, M., Hughes, S. H., & Arnold, E. (2001). The Lys103Asn mutation of HIV‐1 RT: A novel mechanism of drug resistance. Journal of Molecular Biology, 309, 437–445.
Kang, D., Feng, D., Sun, Y., Fang, Z., Wei, F., De Clercq, E., Pannecouque, C., Liu, X., & Zhan, P. (2020). Structure‐based Bioisosterism yields HIV‐1 NNRTIs with improved drug‐resistance profiles and favorable pharmacokinetic properties. Journal of Medicinal Chemistry, 63, 4837–4848.
Kenyon, J. C., & Lever, A. M. (2011). The molecular biology of feline immunodeficiency virus (FIV). Viruses, 3, 2192–2213.
Lansdon, E. B., Brendza, K. M., Hung, M., Wang, R., Mukund, S., Jin, D., Birkus, G., Kutty, N., & Liu, X. (2010). Crystal structures of HIV‐1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): Implications for drug design. Journal of Medicinal Chemistry, 53, 4295–4299.
Long, M., Cantrelle, F.‐X., Robert, X., Boll, E., Sierra, N., Gouet, P., Hanoulle, X., Alvarez, G. I., & Guillon, C. (2021). Identification of a potential inhibitor of the FIV p24 capsid protein and characterization of its binding site. Biochemistry, 60, 1896–1908.
Lu, H.‐H., Xue, P., Zhu, Y.‐Y., Ju, X.‐L., Zheng, X.‐J., Zhang, X., Xiao, T., Pannecouque, C., Li, T.‐T., & Gu, S.‐X. (2017). Structural modifications of diarylpyrimidines (DAPYs) as HIV‐1 NNRTIs: Synthesis, anti‐HIV activities and SAR. Bioorganic & Medicinal Chemistry, 25, 2491–2497.
Medeiros Sde, O., Abreu, C. M., Delvecchio, R., Ribeiro, A. P., Vasconcelos, Z., Brindeiro Rde, M., & Tanuri, A. (2016). Follow‐up on long‐term antiretroviral therapy for cats infected with feline immunodeficiency virus. Journal of Feline Medicine and Surgery, 18, 264–272.
Medinas, R. J., Lambert, D. M., & Tompkins, W. A. (2002). C‐terminal gp40 peptide analogs inhibit feline immunodeficiency virus: Cell fusion and virus spread. Journal of Virology, 76, 9079–9086.
Nattakarn, P., Praphasri, S., Supa, H., Chanin, N., Kiattawee, C., & Gleeson, M. P. *. (2019). Synthesis, plasmodium falciparum inhibitory activity, cytotoxicity and solubility of N2, N4 ‐disubstituted Quinazoline‐2,4‐diamines. Medicinal Chemistry, 15, 693–704.
Nolan, D., & Mallal, S. (2004). Complications associated with Nrti therapy: Update on clinical features and possible pathogenic mechanisms. Antiviral Therapy, 9, 849–863.
Pedersen, N. C., Ho, E. W., Brown, M. L., & Yamamoto, J. K. (1987). Isolation of a T‐lymphotropic virus from domestic cats with an immunodeficiency‐like syndrome. Science, 235, 790–793.
Power, C. (2018). Neurologic disease in feline immunodeficiency virus infection: Disease mechanisms and therapeutic interventions for NeuroAIDS. Journal of Neurovirology, 24, 220–228.
Ren, J., Nichols, C., Bird, L., Chamberlain, P., Weaver, K., Short, S., Stuart, D. I., & Stammers, D. K. (2001). Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV‐1 reverse transcriptase and the improved resilience of second generation non‐nucleoside inhibitors 1 1Edited by J. Karn. Journal of Molecular Biology, 312, 795–805.
Reubel, G. H., Dean, G. A., George, J. W., Barlough, J. E., & Pedersen, N. C. (1994). Effects of incidental infections and immune activation on disease progression in experimentally feline immunodeficiency virus‐infected cats. Journal of Acquired Immune Deficiency Syndromes, 7, 1003–1015.
Saparpakorn, P., Chimprasit, A., Jantarat, T., & Hannongbua, S. (2022). Insight investigation of rilpivirine and compounds from mushrooms as feline immunodeficiency virus reverse transcriptase inhibitors using molecular dynamics simulations and quantum chemical calculations. Molecular Simulation, 48, 463–476.
Savarino, A., Pistello, M., D'Ostilio, D., Zabogli, E., Taglia, F., Mancini, F., Ferro, S., Matteucci, D., De Luca, L., Barreca, M. L., Ciervo, A., Chimirri, A., Ciccozzi, M., & Bendinelli, M. (2007). Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS. Retrovirology, 4, 79.
Schneidman‐Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008a). PharmaGist: A webserver for ligand‐based pharmacophore detection. Nucleic Acids Research, 36, W223–W228.
Schneidman‐Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008b). Deterministic pharmacophore detection via multiple flexible alignment of drug‐like molecules. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 15, 737–754.
Schwartz, A. M., McCrackin, M. A., Schinazi, R. F., Hill, P. B., Vahlenkamp, T. W., Tompkins, M. B., & Hartmann, K. (2014). Antiviral efficacy of nine nucleoside reverse transcriptase inhibitors against feline immunodeficiency virus in feline peripheral blood mononuclear cells. American Journal of Veterinary Research, 75, 273–281.
Seetaha, S., Hannongbua, S., Rattanasrisomporn, J., & Choowongkomon, K. (2021). Novel peptides with HIV‐1 reverse transcriptase inhibitory activity derived from the fruits ofQuercus infectoria. Chemical Biology & Drug Design, 97, 157–166.
Seetaha, S., Ratanabunyong, S., Tabtimmai, L., Choowongkomon, K., Rattanasrisomporn, J., & Choengpanya, K. (2020). Anti‐feline immunodeficiency virus reverse transcriptase properties of some medicinal and edible mushrooms. Vet World, 13, 1798–1806.
Silprasit, K., Thammaporn, R., Tecchasakul, S., Hannongbua, S., & Choowongkomon, K. (2011). Simple and rapid determination of the enzyme kinetics of HIV‐1 reverse transcriptase and anti‐HIV‐1 agents by a fluorescence based method. Journal of Virological Methods, 171, 381–387.
Sluis‐Cremer, N., & Tachedjian, G. (2008). Mechanisms of inhibition of HIV replication by non‐nucleoside reverse transcriptase inhibitors. Virus Research, 134, 147–156.
Sparger, E. E. (2006). FIV as a model for HIV: An overview. In H. Friedman, S. Specter, M. Bendinelli (Eds.), In Vivo Models of HIV Disease and Control. Infectious Diseases and Pathogenesis. Springer.
Toviwek, B., Suphakun, P., Choowongkomon, K., Hannongbua, S., & Gleeson, M. P. (2017). Synthesis and evaluation of the NSCLC anti‐cancer activity and physical properties of 4‐aryl‐ N ‐phenylpyrimidin‐2‐amines. Bioorganic & Medicinal Chemistry Letters, 27, 4749–4754.
Usach, I., Melis, V., & Peris, J. E. (2013). Non‐nucleoside reverse transcriptase inhibitors: A review on pharmacokinetics, pharmacodynamics, safety and tolerability. Journal of the International AIDS Society, 16, 1–14.
Vainio, M. J., Puranen, J. S., & Johnson, M. S. (2009). ShaEP: Molecular overlay based on shape and electrostatic potential. Journal of Chemical Information and Modeling, 49, 492–502.
Xu, S., Sun, L., Liu, X., & Zhan, P. (2023). Opportunities and challenges in new HIV therapeutic discovery: What is the next step? Expert Opinion on Drug Discovery, 18, 1195–1199.
Zeng, Z.‐S., He, Q.‐Q., Liang, Y.‐H., Feng, X.‐Q., Chen, F.‐E., Clercq, E. D., Balzarini, J., & Pannecouque, C. (2010). Hybrid diarylbenzopyrimidine non‐nucleoside reverse transcriptase inhibitors as promising new leads for improved anti‐HIV‐1 chemotherapy. Bioorganic & Medicinal Chemistry, 18, 5039–5047.
Zuo, X., Huo, Z., Kang, D., Wu, G., Zhou, Z., Liu, X., & Zhan, P. (2018). Current insights into anti‐HIV drug discovery and development: A review of recent patent literature (2014–2017). Expert Opinion on Therapeutic Patents, 28, 299–316.
معلومات مُعتمدة: National Research Council of Thailand
فهرسة مساهمة: Keywords: FIV; HIV‐1 RT; biochemical screening; cheminformatics; synthesis
المشرفين على المادة: 0 (Reverse Transcriptase Inhibitors)
EC 2.7.7.49 (HIV Reverse Transcriptase)
0 (Pyrimidines)
0 (Alkynes)
EC 2.7.7.- (reverse transcriptase, Human immunodeficiency virus 1)
0 (Cyclopropanes)
0 (Benzoxazines)
تواريخ الأحداث: Date Created: 20240509 Date Completed: 20240510 Latest Revision: 20240509
رمز التحديث: 20240510
DOI: 10.1111/cbdd.14530
PMID: 38725091
قاعدة البيانات: MEDLINE
الوصف
تدمد:1747-0285
DOI:10.1111/cbdd.14530